Mr. G's little booklet on

Mathematical Symbols and Definitions

Mr. G's Little Booklets are
I Symbols and Definitions
2 Circular Functions
3 Hyperbolic Functions
4 Complex Numbers
5 Calculus
6 Series
7 Venn Diagrams
8 Logic and Propositional Calculus
9 Vectors and Matrices
10 Probability
II Laplace and Fourier Transforms
12 Miscellaneous Aspects of Mathematics
13 Statistical Tables
14 Trigonometric and Logarithmic Tables
I5 Investigations - General
16 Investigations - Number

Symbol

ϵ
\notin
$\left\{x_{1}, x_{2}, \ldots\right\}$
$\{x: \ldots\}$
$\{x \mid \ldots\}$
n (A)
\varnothing
Y or ε
\mathbf{A}^{\prime}
N
Z
Z^{+}
Z_{n}
Θ
Θ^{+}
$\Theta_{0}{ }^{+}$
$\mathrm{P} \equiv \mathrm{P}_{0}$
P^{+}
X
(x, y)
$A(x, y)$
[$A B$]
AB
(AB)
CÂB
$\triangle \mathrm{CAB}$
$A \times B$
\subseteq

Description

is an element of
is not an element of
the set with elements $\mathrm{X}_{1}, \mathrm{x}_{\mathbf{2}}, \ldots$
the set of all x such that...
the set of all \times such that ...
the number of elements in set \mathbf{A}
the empty set
the universal set
the complement of set \mathbf{A}
set of natural numbers, $\{0,1,2,3, \ldots\}$
set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
set of positive integers, $\{1,2,3, \ldots\}$
set of integers modulo $n,\{1,2,3, \ldots, n-I\}$
set of rational numbers $\left\{{ }^{p} /_{\boldsymbol{q}}: p \in Z, q \in Z^{+}\right\}$
set of positive rational numbers, $\{x \in \Theta: x>0\}$
set of twe rational numbers and zero, $\{x \in \Theta: x \geq 0\}$
set of real numbers (and note 0 is a real number)
set of positive real numbers, $\{x \in R: x>0\}$
set of complex numbers
the ordered pair x, y
the point A in the plane with Cartesian coordinates x and y
the line segment with end points A and B
the length of $[A B]$
the line containing points A and B
the angle between [CA] and [AB]
the triangle whose vertices are A, B and C
the cartesian product of sets A cross $B=\{(a, b): a \in A, b \in B\}$
is a subset of

\subset	is a proper subset of
\cup	union
\bigcirc	intersection
$P(A)$	the probability of event A
$P(A)^{\prime}$	the probability of event "not A"
$P(A \mid B)$	the probability of event A given B
x_{1}, x_{2}, \ldots	observations of a variable
f_{1}, f_{2}, \ldots	frequencies with which the observations $x_{1}, x_{2}, x_{3} \ldots$ occur
$\bar{x} \quad \overline{\mathbf{x}}$	sample mean
μ	population mean
s_{n}	standard deviation of the sample
σ	standard deviation of the population
r	Pearson's product-moment correlation coefficient
χ^{2}	chi-squared
[a, b]	the closed interval, $\{x \in R: a \leq x \leq b\}$
[a, b)	the interval $\{x \in R: a \leq x<b\}$
(a, b]	the interval $\{x \in R: a<x \leq b\}$
(a, b)	the open interval $\{x \in R: a<x<b\}$
]a, b [the open interval $\{x \in R: a<x<b\}$
u_{n}	the $\mathrm{n}^{\text {th }}$ term of a sequence or series
d	the common difference of an arithmetic sequence
r	the common ratio of a geometric sequence
S_{n}	the sum of the first n terms of a sequence $u_{1}+u_{2}+\ldots+u_{n}$
$y \mathrm{Rx}$	y is related to x by the relation R
$y \sim x$	y is equivalent to x, in the context of some equivalence relation
\neq	is not equal to
三	is identical to or is congruent (equivalent) to
\sim	is approximately equal to (preferable to \approx or Λ)
\cong	is isomorphic to (there exists a one-to-one mapping)
\propto	is proportional to

< / >	is less than / is greater than
\leq	is less than or equal to, is not greater than
\geq	is greater than or equal to, is not less than
\square	is not less than
\square	is not greater than
∞	infinity
$p \wedge q$	P AND q (conjunction)
$\mathrm{P} \vee \mathrm{q}$	P OR q (or both) (disjunction)
$\mathrm{P} \vee \mathrm{q}$	P XOR q (not both) (exclusive disjunction)
$-p$	NOT p (preferable to ~p or p^{\prime})
\Rightarrow / \Leftarrow	P implies q (if p then q) / p is implied by q (if q then p)
\Leftrightarrow	p implies and is implied by $\mathrm{q}(\mathrm{p}$ is equivalent to q$)$
\exists	there exists
\forall	for all
$\sum \mathrm{a}_{\mathrm{i}}$	$a_{1}+a_{2}+\ldots+a_{n}$
$\Pi \mathrm{a}_{\mathrm{i}}$	$a_{1} \times \mathrm{a}_{2} \times \ldots \times \mathrm{a}_{n}$
${ }^{1} \mathrm{a}$	a to the power of $1 / n, n^{\text {th }}$ root of a
$\sqrt{ } \mathrm{a}$	the positive square root of a
$\|\mathrm{a}\|$	the modulus of a
n !	n factorial
$\binom{n}{r}$	the binomial coefficient
$f(x)$	the value of the function f at \times / image of \times under function f
$f: \mathrm{A} \rightarrow \mathrm{B}$	f is a function under which each element set A has image in set B
$f: x \alpha y$	the function f maps the element x to the element y
f^{-1}	the inverse function of the function f
$g^{\circ} f, g f$	composite function f and g defined by $\left(g^{\circ} f\right)(x)$ or $g f(x)=g(f(x))$
$\lim _{x \rightarrow a} f(x)$	the limit of $f(x)$ as x tends to a
$\Delta \mathrm{x}, \delta \mathrm{x}$	an increment of x
$\mathrm{dy} / /_{\mathrm{dx}}$	the derivative of y with respect to x

$\begin{gathered} d^{n} y / d x^{n} \\ f^{\prime}(x), f^{\prime \prime}(x), \ldots f^{(n)}(x) \\ \int y d x \\ a^{b} \int^{b} y d x \\ \partial \mathbf{v} / \partial x \\ e \\ e^{x}, \exp x \\ \log x \\ \log _{a} x \\ \ln x \end{gathered}$ sin, cos, tan, cosec, sec, cot $\begin{gathered} \sin ^{-1}, \cos ^{-1}, \tan ^{-1} \text { etc. } \\ \text { sinh, cosh, tanh etc. } \\ \sinh ^{-1}, \cosh ^{-1}, \tanh ^{-1} \text { etc. } \end{gathered}$ z $\mathcal{R}(\mathrm{z})$ $I(\mathrm{z})$ $\|z\|$ $\arg z$ M \mathbf{M}^{-1} $\mathbf{M ~}^{\top}$ $\operatorname{det} \mathbf{M},\|\mathbf{M}\|$ a â i, $\mathbf{i}, \underline{\mathbf{k}}$ $\|\underline{\mathbf{a}}\|, a$ $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}$ $\underline{a} \times \underline{b}$	the $\mathrm{n}^{\text {th }}$ derivative of y with respect to x first, second $\ldots \mathrm{n}^{\text {th }}$ derivatives of $f(\mathrm{x})$ with respect to x the indefinite integral of y with respect to x the definite integral of y with respect to x the partial derivative of V with respect to x base of natural logarithms ($\mathrm{e} \cong 2.71828 \ldots$) exponential function of x logarithm to the base 10 of x logarithm to the base a of x natural logarithm of $\times\left(\right.$ preferable to $\left.\log _{e} x\right)$ the circular functions inverse circular functions the hyperbolic functions inverse hyperbolic functions a complex number, $z=x+i y$ the real part of $\mathrm{z}, \mathcal{R}(\mathrm{z})=\mathrm{x}$ the imaginary part of $z, I(z)=y$ $\sqrt{ }\left(a^{2}+b^{2}\right)$ termed r the modulus or absolute value the argument of $\mathrm{z}, \arg \mathrm{z}=\tan ^{-1} \mathrm{y} / \mathrm{x}$ a matrix M the inverse of the matrix \mathbf{M} the transpose of the matrix \mathbf{M} the determinant of the square matrix \mathbf{M} vector a a unit vector in the direction of a unit vectors in direction of the cartesian coordinate axes the magnitude of \mathbf{a} the scalar product of $\underline{\mathbf{a}} \& \underline{\mathbf{b}}$ viz. ${ }_{i=1} \Sigma^{n} \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+.$. the vector product of $\underline{\mathbf{a}} \& \underline{\mathbf{b}}$ viz. $\|\underline{\mathbf{a}}\|\|\underline{\mathbf{b}}\| \sin \theta \mathbf{n}$

Greek Alphabet

Principle/Simplest Use English Type

alpha	A	not used	α	first root of quadratic	a	a
beta	B	Beta function	β	second root of quadratic	b	b
gamma	Γ	Gamma function	γ	Euler's constant	g	g
delta	Δ	Difference operator	δ	small increment	d	d
epsilon	E	not used	ε	error	short e	e
zeta	Z	not used	ζ	Riemann zeta function	z	z
eta	H	not used	η	efficiency	long e	h
theta	Θ	asymp. tight bound	θ	angle	th	q
iota	I	not used	1	imaginary unit	i	i
kappa	K	not used	κ	curvature	k	k
lambda	Λ	diag. matrix eigen-values	λ	failure rate	1	1
mu	M	not used	μ	population mean	m	m
nu	N	not used	v	poisson ratio	n	n
xi	Ξ	grand canonical ensemble	ξ	damping coefficient	x	x
omicron	O	limiting behaviour function	o	generally not used	short 0	0
pi	П	Product operator	π	ratio ${ }^{c} /{ }_{d}$ circle	P	P
rho	P	not used	ρ	correlation coefficient	r	r
sigma	Σ	summation	σ	standard deviation	s	s
tau	T	not used	τ	mean lifetime	t	t
upsilon	Y	Bessel function	v	generally not used	u	u
phi	Φ	cumulative function	ϕ	golden ratio	ph	f
phi (alt.)	ϑ	not used	φ	normal function	ph	j
chi	X	probability function	χ^{2}	chi-squared prob.function	ch	c
psi	Ψ	not used	ψ	wave function	ps	y
omega	Ω	mathematical constant	ω	angular frequency	long o	w

Counting

No.	Greek	Latin
I	mono	uni
2	duo	bi
3	tri	tri
4	tetra	quad
5	penta	quin
6	hexa	sex
7	hepta	sept
8	octo	oct
9	nona	non
10	deca	dec

These booklets are written and produced by Robert Goodhand
Although the formulae and expressions given have been individually derived and checked errors do creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com

