Mr. G's little booklet on

Differentiation and Integration Standard Forms

Issue 5.0 5/16

∞ rg

Mr. G's Little Booklets are

- I Symbols and Definitions
- 2 Circular Functions
- **3** Hyperbolic Functions
- 4 Complex Numbers
- 5 Calculus
- 6 Series
- 7 Venn Diagrams
- 8 Logic and Propositional Calculus
- 9 Vectors and Matrices
- **10** Probability
- **II Laplace and Fourier Transforms**
- **12 Miscellaneous Aspects of Mathematics**
- **13 Statistical Tables**
- **14 Trigonometric and Logarithmic Tables**
- 15 Investigations General
- **16** Investigations Number

∞ rg

Stationary Points

if ${}^{dy}/{}_{dx} = 0$ and ${}^{d^2y}/{}_{dx^2} > 0$ then we have a minimum point if ${}^{dy}/{}_{dx} = 0$ and ${}^{d^2y}/{}_{dx^2} < 0$ then we have a maximum point if ${}^{dy}/{}_{dx} = 0$ and ${}^{d^2y}/{}_{dx^2} = 0$ then the situation is indeterminate

Notes

[†] Non standard analysis of hyperreals legitimises the infinitesimal dx without using limits.

Integration - Primary Methods					
∫ (u + v +w) dx	=	∫udx + ∫vdx + ∫wdx	terms can be integrated separately		
$\int a f(x) dx$	=	a∫ $f(x)$ dx	constants unaffected by integration		
$\int f(x) dx$	=	∫ ƒ(u) ^{dx} / _{du} du	Integration by substitution		
∫u dv	=	uv –∫v du	Integration by parts $^{+}$		
Let u be the easy differential and v be the easy integral.					
If there is just an unintegrable function u then multiply by 1 (strictly you set $dv = 1 \cdot dx$).					
$\int f'(x)[f(x)]^n dx$	=	$({}^{I}/_{n+1}) [f(x)]^{n+1}$	when integral is of this pattern		

Trigonometric Identities

To integrate $\sin^2 x \, dx$ or $\cos^2 x \, dx$ write in terms of $\cos 2x$

To integrate $\tan^2 x \, dx$ write in terms of sec² x

To integrate $\cot^2 \times dx$ write in terms of $\csc^2 x$

Definite Integrals

اړ

^b
$$f'(x) dx = f(b) - f(a)$$

Area = $a \int^{b} f(x) dx$
Area = $a \int^{b} f(y_{1} - y_{2}) dx$

see also trapezium rule in numerical methods

volume rotation = $\pi_{a}^{b} y^{2} dx$

Integrals involving Natural Logs.

Remember that $\ln a = \ln (\frac{l}{a})$.

In this booklet only the positive log solution is given.

Where log solutions are involved, the absolute value should be specified.

Notes

[†] This follows immediately from d(uv) = vdu + udv

For repeated application, differentiate down first column and integrate down second.

Answer is the product of the diagonals alternately + then - then + etc.

Standard Differentiations and Integrations

$\int f(\mathbf{x}) \mathrm{d}\mathbf{x} = \mathbf{i} + \mathbf{c}$	f (x)	$f'(x) = \frac{dy}{dx}$
cos θ	sin θ	cos θ
sin θ	$\cos \theta$	sin θ
In sec θ	tan θ	$\sec^2 \theta \equiv 1 + \tan^2 \theta$
In <mark>cosec θ</mark> – cot θ	cosec θ	$-\cos \theta \cdot \cot \theta$
In <mark>sec θ</mark> + tan θ	[†] sec θ	sec θ • tan θ
In <mark>sin θ</mark>	$\cot heta$	cosec ² θ
$x \sin^{-1} x + \sqrt{1-x^2}$	sin ⁻¹ x	$\frac{1}{\sqrt{1-x^2}}$
$x \cos^{-1} x - \sqrt{(1-x^2)}$	cos ⁻¹ x	$-1/\sqrt{1-x^2}$
x tan ⁻¹ x – ½ ln l + x²	tan ⁻¹ x	l/(+ x ²)
$x \operatorname{cosec}^{-1} x + \operatorname{cosh}^{-1} x$	cosec ⁻¹ x	$-1/(x \sqrt{(x^2-1)})$
$x \sec^{-1}x - \cosh^{-1}x$	sec ⁻¹ x	/ _{(x √(x² − 1))}
$x \cot^{-1}x + \frac{1}{2} \ln 1 + x^2 $	cot ⁻¹ x	$-1/(1 + x^2)$
cosh x	sinh x	cosh x
sinh x	cosh x	sinh x
In cosh x	tanh x	$sech^2 x \equiv I - tanh^2 x$
In coth x – cosech x	cosech x	cosech x • coth x
tan ^{-I} (sinh x)	[†] sech x	¯ sech x ● tanh x
In sinh x	coth x	cosech ² x
$x \sinh^{-1} x - \sqrt{(x^2 + 1)}$	sinh ⁻¹ x	/ _{√(x² +)}
$x \cosh^{-1} x - \sqrt{(x^2 - 1)}$	cosh ⁻¹ x	/ _{√(x² − 1)}
x tanh ⁻¹ x + ½ ln l – x²)	tanh ⁻¹ x	$ _{(1-x^2)}$ $ _{ <1}$
$x \operatorname{cosech}^{-1}x + \operatorname{sinh}^{-1}x$	cosech ⁻¹ x	⁻ / _{(x √(l+x²)}
$x \operatorname{sech}^{-1} x + \operatorname{sin}^{-1} x$	sech ⁻¹ x	-I/ _{x√(1-x²)}
$x \operatorname{coth}^{-1} x + \frac{1}{2} \ln x^2 - 1 $	coth ⁻¹ x	$ _{(1-x^2)}$ x >1

Notes

[†] see notes on the Gudermannian function in the Hyperbolic Booklet

the constant of integration is assumed.

Standard Differentiation	Standard Differentiations and Integrations $x \rightarrow ax + b$					
$\int f(\mathbf{x}) \mathrm{d}\mathbf{x} = \mathbf{i} + \mathbf{c}$	f (x)	$f'(x) = \frac{dy}{dx}$				
$(I/a) \cos(a\theta + b)$	sin (aθ + b)	$a \cos (a\theta + b)$				
$(^{I}/_{a}) \sin (a\theta + b)$	$\cos(a\theta + b)$	[–] a sin (aθ + b)				
$('')_{a}$ ln sec $(a\theta)$	tan (aθ + b)	a sec ² (a θ + b)				
$(I/a) \ln \left \operatorname{cosec} \left(a\theta \right) - \cot \left(a\theta \right) \right $	$cosec(a\theta + b)$	a cosec (a θ +b) • cot (a θ +b)				
$('_{a}) \ln \sec (a\theta) + \tan (a\theta) $	sec $(a\theta + b)$	a sec $(a\theta + b) \cdot tan (a\theta + b)$				
(^I / _a) In <mark>sin (aθ)</mark>	$\cot(a\theta + b)$	a cosec ² (a θ + b)				
$x \sin^{-1} x/a + \sqrt{a^2 - x^2}$	sin ^{-1 x} /a	$1/\sqrt{a^2 - x^2}$ $x^2 < a^2 > 0$				
$\times \cos^{-1} x/a - \sqrt{a^2 - x^2}$	cos ^{-1 x} / _a	$-1/\sqrt{a^2-x^2}$				
$x \tan^{-1} x/_{a} - \frac{1}{2} a \ln a^{2} + x^{2} $	tan ^{-I x} / _a	$a/(x^2 + a^2)$				
$\times \operatorname{cosec}^{-1 \times} /_{a} + \operatorname{a} \operatorname{cosh}^{-1 \times} /_{a}$	cosec ^{-1 x} /a	$-a/ x /(x^2-a^2)$				
$x \sec^{-1} x/a - a \cosh^{-1} x/a$	sec ^{-1 x} /a	$a/ x \sqrt{(x^2-a^2)}$				
$x \cot^{-1} x/_{a} + 1/_{2} a \ln a^{2} + x^{2} $	cot ^{-1 x} / _a	$-a/(x^2 + a^2)$				
(^I / _a) cosh a x	sinh (a x)	a cosh (a x)				
(^I / _a) sinh a x	cosh (a x)	a sinh (a x)				
$(''/_a) \ln \cosh a x $	tanh (a x)	a sech² (a x)				
$('/_{a}) \ln \tanh('/_{2}ax $	cosech (a x)	a cosech (ax) • coth (ax)				
$(''_{a})$ 2 tan ⁻¹ (e ^{ax})	sech (a x)	a sech (ax) • tanh (ax)				
(^I / _a) In <mark>(sinh a x)</mark>	coth (a x)	a cosech ² (ax)				
$x \sinh^{-1} x/a - \sqrt{(x^2 + a^2)}$	sinh ^{-1 ×} /a	$\frac{1}{\sqrt{x^2 + a^2}} \qquad a > 0$				
$x \cosh^{-1} x/a - \sqrt{(x^2 - a^2)}$	$\cosh^{-1} x/a$	$\frac{1}{\sqrt{x^2 - a^2}} \qquad x > a a > 0$				
x tanh ^{-1 x} / _a + ¹ / ₂ a ln $ a^2-x^2 $	tanh ^{-1 x} / _a	$a/(a^2 - x^2)$ $x^2 < a^2 = 0$				
$\times \operatorname{cosech}^{-1 \times}/_{a} + \operatorname{a sinh}^{-1 \times}/_{a}$	$\operatorname{cosech}^{-1}$ */ _a	$-a/x\sqrt{x^2+a^2}$				
$x \operatorname{sech}^{-1} x/_{a} - a \cos^{-1} x/_{a}$	sech ^{-1 x} /a	$(x^{-a}/x^{\sqrt{a^2-x^2}})$				
$x \operatorname{coth}^{-1x}/_{a} + \frac{1}{2} \ln x^{2} - a^{2} $	$\operatorname{coth}^{-1} x/_{a}$	$a/(a^2 - x^2)$ $x^2 > a^2$				

Notes

[†] The differentials appear identical, but remember the functions have no common mapping. Log expressions of integrands can be tidied up by $*_{\div}$ through by any constant.

Standard Differentiations and	d Integratio	ons .
$\int f(\mathbf{x}) \mathrm{d}\mathbf{x} = ? + \mathbf{c}$	f(x)	$f'(\mathbf{x}) = \frac{dy}{dx}$
$\frac{1}{2} ax^{2} + bx$	ax + b	а
$ _{(n+1)}$. x ⁿ⁺¹	x ⁿ	n x ^{n–I}
e ×	e ×	e ×
- e -×	e ^{-x}	- e -×
no general integral.	e ^{<i>f</i>(x)}	$f'(x) e^{f(x)}$
$x \ln x - x$	In x †	l/x
$(I/_{\ln w})(x \ln x - x)$	$\log_{w} x ^{\ddagger}$	l/ _{x.ln w}
no general integral except when $f(x) = x^n$	$\ln f(\mathbf{x})$	$f'(\mathbf{x}) / f(\mathbf{x})$
$\frac{1}{2} x^2 \ln x - \frac{1}{4} x^2$	$x \ln x $	l + ln x
$\ln(\ln \mathbf{x})$	/ _{x In x}	$ x^{-1} _{x^{2} \ln x} - x^{2} _{x^{2} (\ln x)^{2}}$
$(I/_{\ln w })w^{x}$	w ^x	w ^x (ln w) w>0
$({}^{I}/{}_{In}{}_{w}{})w^{-x}$	w ^{-x}	⁻ ln w × w [−] x
not integrable	w ^(1/x)	$(1/x^{2}) \ln w \times w^{(1/x)}$
not integrable	w ^{-(1/x)}	$(1/x^2) \ln w \times w^{-(1/x)}$
not integrable	x ^x	$(\ln x + 1) \times x^{\times}$
not integrable	x ^{-x}	$(\ln x + 1) \times x^{-x}$
not integrable	x ^{I/x}	$({}^{I}/{}_{x^{2}})(I - \ln x) x^{I/x}$
not integrable	x ^{-1/x}	$({}^{I}/{}_{x^{2}})(\ln x - I) x^{-I/x}$
Other Useful Integrals		
$\sqrt{(x + a)} (^{2}/_{3})(x + 2a)$	$x_{1/\sqrt{x+a}}$	use substitution $u = \sqrt{(x + a)}$
$\sqrt{(x-a)} (^{2}/_{3})(x-2a)$	$x/\sqrt{x-a}$	use substitution $u = \sqrt{(x - a)}$
$\sqrt{(a - x)} (^{2}/_{3})(2a - x)$	$x_{1/(a-x)}$	use substitution $u = \sqrt{(a - x)}$
Notes		
[†] Some authorities define $\ln x$ to be $\int_{-1}^{x-1}/2$	_t dt	

[‡] think of this as ^{In ×}/_{In w}

Standard Differentiations and Integrations $x \rightarrow ax + b$					
$\int f(\mathbf{x}) \mathrm{d}\mathbf{x} = \mathbf{i} + \mathbf{c}$	<i>f</i> (x)	$f'(x) = \frac{dy}{dx}$			
$\frac{1}{2} ax^{2} + bx$	ax + b	а			
$({}^{I}/_{a}) ({}^{I}/_{n+I}) (ax+b)^{n+I}$	$(ax + b)^n$	an (ax + b) ^{n–I}			
$('/_a)$. e^{ax+b}	e ^{ax+b}	ae ^{ax + b}			
(1/a). e $(ax + b)$	e ^{- (ax + b)}	$-a e^{-(ax + b)}$			
no general form	e ^{f (x)}	$f'(x) e^{f(x)}$			
(x+b/a). In $ ax+b - x$	In ax + b	$a'_{(ax + b)}$ and if b=0 then I'_{x}			
$(^{I}/_{Inw})\{(x+^{b}/_{a}).ln (ax +b)-x\}$	log _w ax+b	$(I/_{lnw})^{a}/_{(ax+b)}$			
-1/f(x)	$f'(x) / [f(x)]^2$				
$\frac{1}{2}(x^2-b^2/a^2)\ln ax+b - \frac{1}{4a}x(ax-2b)$	x In ax+b	$\ln ax+b + \frac{ax}{ax+b}$			
$2\sqrt{f(x)}$	$f'(x) \mid_{\sqrt{f(x)}}$	used to integrate some inverse functions			
$\left(\left {}^{\prime} \right _{a \ln w } \right) w^{ax+b}$	w ^{ax+b}	In w • a w ^{ax+b}			
$ ^{-1}/_{\ln w } w^{-x}$	w ^{-(ax+b)}	– In w • a w ^{-(ax+b)}			
no integral?	w ^(I/ax+b)	$-(I/_{(ax+b)^2}) \ln w \cdot a w$			
no integral?	w ^{-(1/x)}	$(I/_{(ax+b)^2}) \ln w \cdot a w (-I/ax+b)$			
no integral?	x ^{ax+b}	$(ax \ln x + ax + b) \cdot x^{ax+b-1}$			
no integral?	x ^{-(ax+b)}	$-(ax \ln x + ax +b) \cdot x^{-(ax+b)-1}$			
no integral?	X ^{I/ax+b}	$({}^{I}/_{(ax+b)^{2}}).(a \times \ln x - ax - b) \times {}^{I/ax+b-1}$			
no integral?	_l/ax+b X	$({}^{I}/_{(ax+b)^{2}}).(a \times \ln x - ax - b) \times {}^{-I/ax+b-1}$			

Some Tricky Integrals (using inverse trig substitutions)

$$\frac{1}{2} \left[a^{2} \sinh^{-1} \frac{x}{a} + x \sqrt{(x^{2} + a^{2})} \right] \sqrt{(x^{2} + a^{2})} \\ \frac{1}{2} \left[a^{2} \cosh^{-1} \frac{x}{a} + x \sqrt{(x^{2} - a^{2})} \right] \sqrt{(x^{2} - a^{2})} \\ \frac{1}{2} \left[a^{2} \cos^{-1} \frac{x}{a} + x \sqrt{(a^{2} - x^{2})} \right] \sqrt{(a^{2} - x^{2})} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} + x \sqrt{(a^{2} - x^{2})} \right] \sqrt{(a^{2} - x^{2})} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} + x \sqrt{(a^{2} - x^{2})} \right] \sqrt{(a^{2} - x^{2})} \\ \frac{1}{2} \left[a^{2} \cosh^{-1} \frac{x}{a} + x \sqrt{(x^{2} + a^{2})} \right] \frac{x^{2}}{\sqrt{(x^{2} + a^{2})}} \\ \frac{1}{2} \left[a^{2} \cosh^{-1} \frac{x}{a} + x \sqrt{(x^{2} - a^{2})} \right] \frac{x^{2}}{\sqrt{(x^{2} - a^{2})}} \\ \frac{1}{2} \left[a^{2} \cos^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} - x^{2})} \right] \frac{x^{2}}{\sqrt{(a^{2} - x^{2})}} \\ \frac{1}{2} \left[a^{2} \sin^{-1} \frac{x}{a} - x \sqrt{(a^{2} -$$

depending which substitution used will differ by $\frac{1}{4} a^2 \pi$

depending which substitution used will differ by $\,{}^{\prime}\!{}^{\prime}_{4}~a^{2}~\pi$

Additional Differentiations and integrations						
$\int \boldsymbol{f}(\boldsymbol{\theta}) \boldsymbol{d}\boldsymbol{\theta} = ? + \mathbf{c}$	f (θ)	$f'(\theta) = {}^{dy}/{}_{d\theta}$				
$\theta_{2} - 1_{4} \sin(2\theta)$	sin² θ	$2 \sin \theta \cos \theta$ [†]				
$\theta_{2} + I_{4} \sin(2\theta)$	$\cos^2 \theta$	$2 \sin \theta \cos \theta$				
tan $\theta - \theta$	tan² θ	2 tan θ sec ² θ				
¯cot θ	cosec ² θ	$2 \operatorname{cosec}^2 \theta \cot \theta$				
tan θ	sec ² θ	2 sec ² θ tan θ				
$-\cot(2\theta) - \theta$	$\cot^2 \theta$	$2 \cot \theta \operatorname{cosec}^2 \theta$				
$\sin \theta - \theta \cos \theta$	θsinθ	$\theta \cos \theta + \sin \theta$				
$\cos \theta + \theta \sin \theta$	θ cos θ	$\cos \theta - \theta \sin \theta$				
No integral	θ tan θ	$\theta \sec^2 \theta + \tan \theta$				
No integral	θ cosec θ	$\cos \theta (I - \theta \cot \theta)$				
No integral	θ sec θ	<mark>sec θ</mark> (I+ θ tan θ)				
No integral	θ cot θ	$\theta \cos^2 \theta + \cot \theta$				
$^{-x}/_{2} + ^{1}/_{4} \sinh (2x)$	sinh² x	2 sinh x cosh x				
$x/_{2} + 1/_{4} \sinh (2x)$	cosh ² x	2 sinh x cosh x				
x – tanh xθ	tanh² x	2 tanh x (I – tanh² x)				
coth x	cosech ² x	⁻ 2 cosech ² x coth x				
tanh x	sech ² x	⁻ 2 sech ² x tanh x				
x – coth x	coth² x	$^{-2}$ coth x cosech ² x				
- sinh x + x cosh x	x sinh x	$x \cosh x + \sinh x$				
$-\cosh x + x \sinh x$	x cosh x	$\cosh x + x \sinh x$				
No integral	x tanh x	x sech² x + tanh x				
No integral	x cosech x	<pre>cosech x (I- x coth x)</pre>				
No integral	x sech x	sech x (I– x tanh x)				
No integral	x coth x	$x \operatorname{cosech}^2 x + \operatorname{coth} x$				

Additional Differentiations and Integrations

Notes

[†] = sin 2θ

Reduction	Formulae (derived	from Integration by Parts)
Let I _n	$= \int \sin^n x dx$	$= -I_n \sin^{n-1} x \cdot \cos x + \frac{n-1}{n} I_{n-2}$
Let I _n	$= \int \cos^n x dx$	$= \frac{1}{n} \cos^{n-1} x \cdot \sin x + \frac{(n-1)}{n} \prod_{n-2}^{n-1} x \cdot \sin x + $
Let I _n	$= \int \tan^n x dx$	$= \frac{1}{n-1} \tan \frac{n-1}{x} - \mathbf{I}_{n-2}$
Let I _n	$= \int \operatorname{cosec}^{n} x dx$	$= -\frac{1}{n-1} \cos^{n-2} x \cdot \cot x + \frac{n-2}{n-1} \mathbf{I}_{n-2}$
Let I _n	$= \int \sec^n x dx$	$= \frac{1}{n-1} \sec^{n-2} x \cdot \tan x + \frac{n-2}{n-1} \ln_{n-2}$
Let I _n	$= \int \cot^n x dx$	$= \frac{-1}{n-1} \cot \frac{n-1}{n-1} \times - \mathbf{I}_{n-2}$
Let I n	$= \int \sinh^n x dx$	$= \frac{1}{n} \sinh \frac{n-1}{x} \cdot \cosh x - \frac{(n-1)}{n} \ln_{n-2}$
Let I _n	$= \int \cosh^n x dx$	$= \frac{1}{n} \cosh \frac{n-1}{x} \cdot \sinh x - \frac{(n-1)}{n} \ln_{n-2}$
Let I _n	$= \int tanh^n x dx$	= ⁻¹ / _{n-1} tanh ⁿ⁻¹ x + 1 _{n-2}
Let I _n	= $\int \operatorname{cosech}^{n} x dx$	= $-1/n_{n-1} \operatorname{cosech}^{n-2} x \cdot \operatorname{coth} x - \frac{n-2}{n-1}/n_{n-1} I_{n-2}$
Let I _n	= ∫ sech ⁿ x dx	= $\frac{1}{n-1} \operatorname{sech}^{n-2} x \cdot \tanh x + \frac{n-2}{n-1} \prod_{n-2}^{n-1} \prod_{n-2}^$
Let I _n	= $\int \coth^n x dx$	$= -I_{n-1} \operatorname{coth}^{n-1} x + I_{n-2}$
Let I n	$= \int x^n e^x dx$	$= x^{n} e^{x} - n I_{n-1}$
Let I _n	$= \int (\ln x)^n dx$	$= x (\ln x)^n - n \mathbf{I}_{n-1}$

Example layout when using Reduction Formulae $\int x^3 e^x dx = x^3 e^x - 3 \mathbf{I}_2$ = $x^{2} e^{x} - 2 I_{1}$ = $x^{1} e^{x} - 2 I_{0}$ **1**₂ I, $= e^{x}$ then rebuild step by step **I**₀ $= x' e^{x} - e^{x}$ I_I $= x^{2} e^{x} - 2xe^{x} + 2e^{x}$ **1**₂ $= x^{3} e^{x} - 3x^{2} e^{x} + 6x e^{x} - 6e^{x}$ **I**₃ $= e^{x}(x^{3}-3x^{2}+6x-6)$ also note $\int x^n e^{ax} dx = \frac{1}{a} (x^n e^{ax} - n \int x^{n-1} e^{ax} dx)$ Notes

Solution First Order Linear Differential Equations					
S	tanda	rd form is	^{dy} / _{dx} +P(x)y	=	Q(x)
The solution is given	by firs	t determining the in	tegrating factor given	by e)Pdx
The transformed equ	ation	is then	y∙e ^{JPdx}	=	Q(x) • e ^{JPdx}
	_				
Bernouilli Diff	erei	ntial Equation	S		
These are of the forr	n				
$\frac{dy}{dx} + P(x)y$	=	Q(x) • y''			
This is a non linear e	quatio	n but is transformed	to a linear equation	by m	ultiplying through by
THE A		y "(I – n)			
This transforms y and	d proc	luces a modified firs	t order linear differen	tial ec	quation
A Few Standa	rd I	ntegrating Fa	ctors		
e ^{∫Idx}	=	ex			
و ^{∫2dx}	=	e ^{2x}			
e ^{∫3dx}	=	e ^{3x}			
e^(∫ '/ _x)	=	x	e^(∫ ^{- I} / _x)	=	۱ _{/x}
e^(∫ ²/ _x)	=	X ²	e^(∫ ⁻² / _x)	=	۱/ _{x²}
e^(∫ ³/ _x)	=	X ³	e^(∫ -3/x)	=	۱ _{/x³}
e^(∫ '/ _x)	=	x	e^(∫ ^{- I} / _x)	=	x ⁻¹
e^(∫ '/ _{2x})	=	x ^{1/2}	e^(∫ ^{- I} / _{2x})	=	x ^{-1/2}
e^(∫ ^I / _{4x})	=	x ^{1/4}	e^(∫ ^{-I} / _{4x})	=	x ⁻¹ /4
e ^{∫tan x dx}	=	sec x	e ^{∫tanh x dx}	=	cosh x
e ^{∫cosec x dx}	=	cosec x–cot x	e [∫] cosech x dx	=	l/ _{cosech x} + coth x
e ^{∫sec x dx}	=	sec x + tan x	doesn't have a neat	hypei	rbolic equivalent
e ^{∫cot x dx}	=	sin x	e ^{∫coth x dx}	=	sinh x

Solution Second Order Linear Differential Equations if $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0$ The auxilary quadratic equation is $am^2 + bm + c = 0$.

When the auxilary equation has two real roots α and β the general solution is

$$y = Ae^{\alpha x} + Be^{\beta x}$$

When the auxilary equation has one coincident root α

 $y = (A + Bx)e^{\alpha x}$

When the auxilary equation has the conjugate roots p^+_i iq

$$y = e^{px}(A \cos qx + B \sin qx)$$

Forms of	of Pa	rticular Integra				
if a ^{d²y} / _{dx²}	+ b ^{dy}	$f'_{dx} + cy = f(x)$	У	= c	ompl	. func. + þarticular integral
for $f(x)$	=	k	set	у	=	К
for $f(x)$	=	k and $c = 0$	set	у	=	Kx
for $f(x)$	=	рх	set	у	=	Px + Q
for $f(x)$	=	px + q	set	у	=	Px + Q
for $f(x)$	=	px² + qx + r	set	у	=	$Px^2 + Qx + R$
for $f(x)$	=	ke ^{qx}	set	у	=	Ke ^{qx} (or try Kxe ^{qx})
for $f(x)$	=	cos kx	set	у	=	P cos kx + Q sin kx
for $f(x)$	=	sin kx	set	у	=	P cos kx + Q sin kx
for $f(x)$	=	cos kx + sin kx	set	у	=	P cos kx + Q sin kx
if $f(x)$	=	cos k _I x + sin k ₂	🗙 who kno	ws?		

$$y = P \cos kx + Q \sin kx$$

$$\frac{dy}{dx} = -k P \sin kx + k Q \cos kx$$

$$\frac{d^2y}{dx^2} = -k^2 P \cos kx - k^2 Q \sin kx$$

Full Solutions of First O	rder D	Differential Equations
$\frac{dy}{dt} = 2t$	then	$y = t^2 + y_0$
dy/dt = cy	then	$y = y_0 e^{ct}$
$a^{dy}/_{dt} + by = 0$	then	$y = y_0 e^{-(b/a)t}$
$a^{dy}/_{dt} + by + c = 0$	then	$y = {-c/_a} + (y_0 + {c/_a})e^{-(b/a)t}$
$a^{dy}/_{dt} + by + c = c \sin \omega$	t then	$y = \frac{c \sin (\omega t - \phi)}{\sqrt{a^2 + \omega^2 b^2}}$
	si	$\mathbf{n} \phi = \frac{\omega \mathbf{b}}{\sqrt{(\mathbf{a}^2 + \mathbf{w}^2 \mathbf{b}^2)}}$
Full Solutions of Second	Orde	r Differential Equations
$\frac{d^2 y}{dt^2} = a$	then	$y = \frac{1}{2} at^2 + y_1 t + y_0$
	cf	$s = ut + \frac{1}{2} at^2$
$\frac{d^2 y}{dt^2} = n^2 y$	then	y = $\frac{1}{2}[(y_0 + \frac{y_1}{n})e^{mt} + (y_0 - \frac{y_1}{n})e^{-nt}]$ = $y_0 \cosh nt + \frac{y_1}{m} \sinh nt$
$\frac{d^2 y}{dt^2} = -n^2 y$	then	$y = y_o \cos nt + {}^{y_I}/m \sin nt$
$a^{d^2y}/_{dt^2} + b^{dy}/_{dt} + cy = 0$	then	$y = e^{-mt}(y_{o}\cosh nt + {}^{yI+m}/_{n}\sinh nt)$ m = ${}^{b}/_{2a}$ n = ${}^{\sqrt{(b^{2} - 4ac)}}/_{2a}$
an alternative represente	ation is where where	$y = e^{-mt} (Ae^{nt} + Be^{-nt})$ $A = \frac{1}{2} [y_0 - (y_1 + my_0)]$ $B = \frac{1}{2} [y_0 (y_1 + my_0) - y_0]$ †
I can also write this equation as a se	econd ord	ler system response (this takes me back!)
$\frac{d^2y}{dt^2} + 2\xi \omega_n^{dy} / dt + w_n^2 y = 0$	then where and	$y = e^{-\xi\omega t} R \sin(w_{n}t\sqrt{(1-\xi^{2})} + \phi)$ $R = \sqrt{\{ [^{(y_{1}+y_{0})}/_{w_{n}\sqrt{(1-\xi^{2})}}]^{2} + y_{0}^{2} \}}$ $\phi = \tan^{-1}\{(^{1}/_{R})(^{y_{0}\omega n}\sqrt{(1-\xi^{2})}/_{y_{1}} + y_{0} \}$

Notes

 † I determined these by taking Laplace transforms and rearranging to an alternative form.

Special Integrals

The Error Function

$$erf(x) = \frac{2}{\sqrt{\pi} 0} \int e^{-t^2} dt$$

The probability density function of the Normal Distribution - the constant to make area = 1

The Elliptic Integral

$$_{\mathbf{0}}\int^{\mathbf{\theta}}\sqrt{(1-\mathbf{k^{2}\ sin^{2}\ \mathbf{\theta}})}\ \mathrm{d}\mathbf{\theta}$$

Encountered when attempting to calculate length of arc of an ellipse.

The Gamma Function

$$f(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

For $n \in Z^+$ then $\Gamma(n+1) = n!$ ie the gamma function is the generalised factorial function. The Beta Function

$$B(n,m) = \int_{0}^{1} x^{n-1} (1-x)^{m-1} dx$$

$$B(n,m) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} / \Gamma(m+n)$$

The beta function can itself be used to evaluate integrals such as $\int_{0}^{1} (1 - x^{4})^{-\frac{1}{2}} dx$

The Bessel Function

$$n(x) = \frac{1}{\pi 0} \int \frac{1}{\pi \cos(n\theta - x \sin\theta)} d\theta$$

The Bessel function is a function of x and n and satifies the Bessel equation order n

$$\frac{d^2y}{dx^2} + \frac{1}{x} \frac{dy}{dx} + (1 - \frac{n^2}{x^2})y = 0$$

Bessel functions are important in the advanced study of high-frequency electrical conductors.

The Logarithmic Integral

$$Li(x) = \frac{1}{2} \int_{\ln t}^{x l} dt$$

Used in estimates of asymptotic values, including estimate of prime counting function $\pi(x)$.

The Cosine Integral

 $Ci(x) = \int_{x}^{\infty} \frac{\cos t}{t} dt$ plus its hyperbolic partner

Used in many applications including signal processing, semiconductor and quantum physics.

The Sine Integral

```
Si(x)
```

x∫^{∞ sin t}/_t dt

plus its hyperbolic partner

Used in many applications including signal processing, semiconductor and quantum physics.

The Exponential Integral

Ei(x)

 $\int_{\infty}^{\infty} e^{-t} / t dt$

The integral of any function of the form $R(x)e^{x}$, where R is a rational function, reduces to an elementary integral and Ei(x)

Mr. G's Integration Tips

Is the function in a standard form?

eg one of the trig functions,

exponential function, log function, algebraic etc.

Is the integrand of the form f'(x) | f(x)?

f'(x) / f(x) then integral will be of the form $\ln | f(x) |$

Is the integrand of the form f'(x) [f(x)]"?

Just integrate [f(x)]ⁿ, differentiate your answer and adjust.

Can the integrand be written in the form $ax + b \mid ax + b \mid (x + c) \mid (x + d)$?

Use partial fractions to simplify into separate fractions and use standard forms to resolve.

Is the integrand a product of two distinct functions?

Use integration by parts $\int u \, dv = uv - \int v \, du$

Choose u for the function that can be easily differentiated and reduced to a constant.

Is the integrand a trig function that can be replaced by a standard expression?

Know your standard trig identities.

Can you simplify the integral by changing the variable?

Simplify the integrand with a substitution.

Counting

No.	Greek	Latin
Ι	mono	uni
2	duo	bi
3	tri	tri
4	tetra	quad
5	þenta	quin
6	hexa	sex
7	hepta	sept
8	octo	oct
9	nona	non
10	deca	dec

These booklets are written and produced by Robert Goodhand

Although the formulae and expressions given have been individually derived and checked errors do

creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com

∕∕ rg