Mr. G's little booklet on

Venn Diagrams

Issue 4.2

7/16

Ю rg

Mr. G's Little Booklets are

- I Symbols and Definitions
- 2 Circular Functions
- **3** Hyperbolic Functions
- 4 Complex Numbers
- 5 Calculus
- 6 Series
- 7 Venn Diagrams
- 8 Logic and Propositional Calculus
- 9 Vectors and Matrices
- **10** Probability
- **II Laplace and Fourier Transforms**
- **12 Miscellaneous Aspects of Mathematics**
- **13 Statistical Tables**
- **14 Trigonometric and Logarithmic Tables**
- 15 Investigations General
- **16** Investigations Number

∞ rg

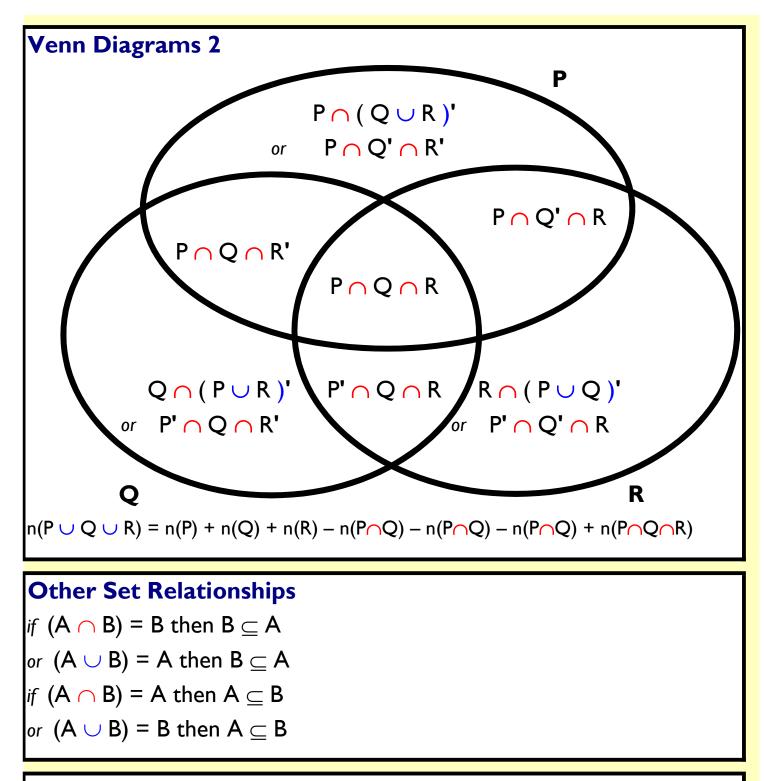
Venn Diagr	ams I			
$P \cap Q$	say P intersection Q	means P AND Q		
$P \cup Q$	say P union Q	means P OR Q <u>or both</u>		
	n (P ∪ Q)	= $n(P) + n(Q) - n(P \cap Q)$		
	(P ∪ Q)' = (P' (∩ Q')		
	P ∩	$Q \cap P'$		
where the left ell	ipse is (P) and the right ellipse	is (Q)		
Thus	s n(P)	= n (P ∩ Q') + n (P ∩ Q)		
and	n (Q)	= n (Q ∩ P') + n (Q ∩ P)		
hence	e n (P ∩ Q)	= n (P) − n (P ∩ Q')		
	n (P ∩ Q)	= n (Q) − n (P' ∩ Q)		
From diagram	$(P \cup Q)'$	= (P' ∩ Q') [†]		
	(P ∩ Q)'	= (P' ∪ Q') †		

Notes

There is also the term $P \setminus Q$ (say "P diff Q") $\equiv P \cap Q$ '

It immediately follows that $P \setminus Q = Q' \setminus P'$ which is similar to the contrapositive rule.

[†] these are de Morgan's Rules



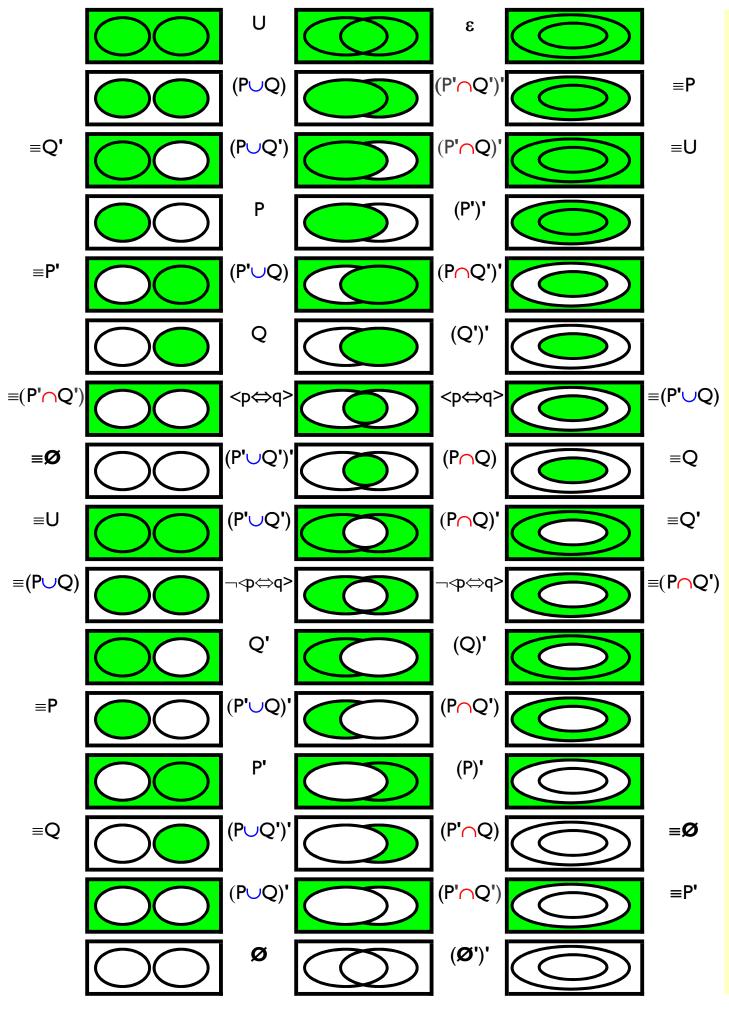
Notes

Venn I	Diagram	S	Truth Tables		Logic Gates	
∪ union					V OR V XOR	
∩ intersection de Morgan			ТЕТЕ	FTF q AND ANA		
0	U	З	ТТТТ	truth	р∨−р	—(p ∧ —p)
0	$(P \cup Q)$	(P' ∩ Q')'	ΤΤΤΕ	incl. disjunction †	P∨q	-(p^q)
0	(P ∪ Q')	(P' ∩ Q)'	ТТЕТ	implication	P ∧ –d	–(–p ∧ q)
0	Р		ТТЕЕ	Þ	Р∨Р	(р∧ р)
0	(P' ∪ Q)	(P ∩ Q')'	ТЕТТ	implication	–p ∨ q	(p ∧q)
0	Q		ТЕТЕ	q	q∨q	-(p^q)
θ	(P ∩ Q) ∪	(P' ∩ Q')	ТЕЕТ	equivalence/ IFF	–(p <u>∨</u> q)	P▲q
θ	(P' ∪ Q')'	$P \cap Q$	TFFF	conjunction	-(p∨q)	P ∧ d
θ	(P' ∪ Q')	(P ∩ Q)'	FTTT	incompatible	_p ∨ _q	—(p <mark>^</mark> q)
0	(P ∩ Q') ∪	∨ (P' ∩ Q)	FTTF	excl. disjunction	P ⊻ q	—(p <u> </u>
θ	Q'		FTFT	negation	(q ∨ q)	(−q ∧ −q)
\bigcirc	(P' ∪ Q)'	P ∩ Q'	FTFF	non implication	–(–p ∨ q)	p ∧ –q
θ	Ρ'		FFTT	negation	–(p ∨ p)	—p ∧ —p
0	(P ∪ Q')'	P' <u>∩</u> Q	FFTF	non implication	(p ∨q)	—p ∧ q
θ	(P ∪ Q)'	P' ∩ Q'	FFFT	joint denial	–(p ∨ q)	—p ∧ —q
θ	Ø		FFFF	contradiction	(p ∨p)	(—p ∧ p)

Notes

[†] also termed " exhaustiveness " –($P \lor q$) is the same as ($-p \land -q$) (everything gets multiplied by "–") If you look carefully, the colouring follows the Truth table exactly. I st column colours the intersection 2 nd column coulours P 3 rd column colours Q 4 th column colours the outside so $P \cap Q$, $P \cap Q'$, Q, $P' \cap Q$, $P' \cap Q'$ are coloured for T in each column in turn.

Venn Diagrams for disjunction, intersection and inclusion

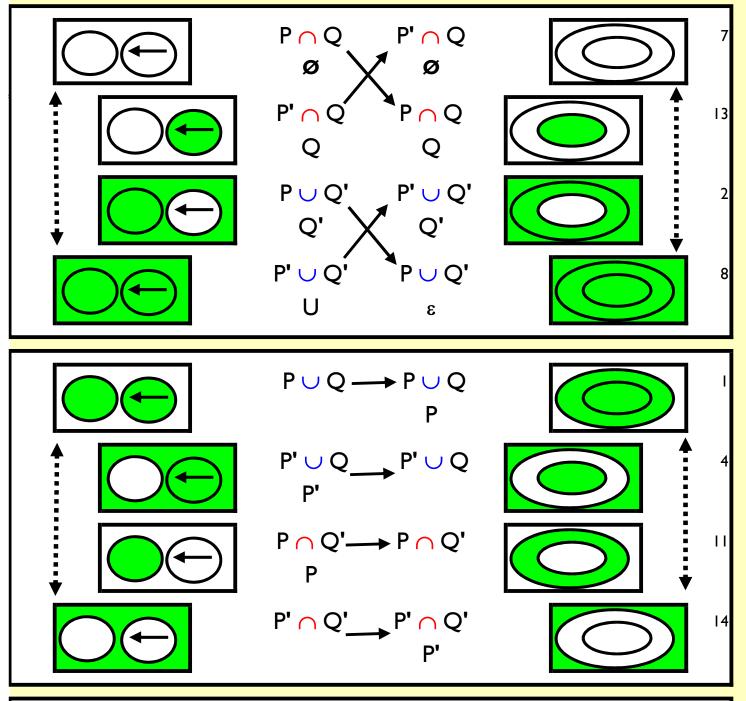


rg X

Visual Representation of de Goodhand's Rule

To move between disjoint and inclusive sets, change P to P' (or P' to P)

for the set relationships that cannot be defined by P (or P') alone.



Notes

de Goodhand's rule holds for the top two pairs with their complements via de Morgan's rules The bottom two pairs with complements are more self evident and pair without change. Drawing Venn diagrams for disjoint and inclusion reduces the arrangements to 2³. There are likewise 8 ways of writing an expression with three elements.

So there is a one-to-one a pairing between the two and some pattern must then be apparent.

Counting

No.	Greek	Latin	
Ι	mono	uni	
2	duo	Ы	
3	tri	tri	
4	tetra	quad	
5	þenta	quin	
6	hexa	sex	
7	hepta	sept	
8	octo	oct	
9	nona	non	
10	deca	dec	

These booklets are written and produced by Robert Goodhand

Although the formulae and expressions given have been individually derived and checked errors do

creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com

∕∕ rg