Mr. G's little booklet on

Vectors and Matrices

Issue 5.0
9/16
$>r g$

Mr. G's Little Booklets are
I Symbols and Definitions
2 Circular Functions
3 Hyperbolic Functions
4 Complex Numbers
5 Calculus
6 Series
7 Venn Diagrams
8 Logic and Propositional Calculus
9 Vectors and Matrices
10 Probability
II Laplace and Fourier Transforms
12 Miscellaneous Aspects of Mathematics
13 Statistical Tables
14 Trigonometric and Logarithmic Tables
I5 Investigations - General
16 Investigations - Number

Vectors I - Linear Transformations

A transformation is linear if
$\mathrm{T}\left(\mathrm{a}_{1} \underline{\mathbf{v}}_{1}+\mathrm{a}_{2} \underline{\mathbf{v}}_{2}\right)=\mathrm{a}_{1} \mathrm{~T}\left(\underline{\mathbf{v}}_{\mathbf{1}}\right)+\mathrm{a}_{2} \mathrm{~T}\left(\underline{\mathbf{v}}_{2}\right)$
where T: $\underline{\mathbf{v}} \boldsymbol{T}(\underline{\mathbf{v}})$
The set of vectors being transformed are termed the domain and the new set the image.

Inverse Transformations

If T is a one-to-one transform then the inverse linear transform T^{-1} exists.
If $T T^{-1}=T^{-1} T=\boldsymbol{I}$

Laws of Vector Algebra

Commutative Law

$$
\underline{\mathbf{v}}+\underline{\mathbf{w}}=\underline{\mathbf{w}}+\underline{\mathbf{v}} \quad \text { Additive }
$$

Associative Law

$$
\begin{aligned}
\underline{\mathbf{v}}+(\underline{\mathbf{w}}+\underline{\mathbf{x}}) & =(\underline{\mathbf{v}}+\underline{\mathbf{w}})+\underline{\mathbf{x}} \\
\mathrm{m}(\mathrm{n} \underline{\mathbf{v}}) & =\mathrm{mn}(\underline{\mathbf{v}}) \\
& =\mathrm{n}(\mathrm{~m} \underline{\mathbf{v}}) \quad \text { Multiplicative }
\end{aligned}
$$

Distributive Law

$$
\begin{array}{rll}
(\mathrm{m}+\mathrm{n}) \underline{\mathbf{v}} & =\mathrm{m} \underline{\mathbf{v}}+\mathrm{n} \underline{\mathbf{v}} & \text { Additive } \\
\mathrm{m}(\underline{\mathbf{v}}+\underline{\mathbf{w}}) & \mathrm{m} \underline{\mathbf{v}}+\mathrm{m} \underline{\mathbf{w}} & \text { Multiplicative }
\end{array}
$$

Notes

Neither vectors nor matrices obey the product commutative law.
Operations that do obey are more the exception than the rule.
eg The "son of Harry's mother" is a different person to the "mother of Harry's son".

Vectors 2 Magnitude and Modulus

Define the vector $\underline{\mathbf{v}}$ by the matrix [${ }^{\mathbf{v} \mathbf{1}} \mathbf{v 2} \mathbf{v 3}$]

$$
\begin{aligned}
|\underline{\mathbf{v}}| & =\sqrt{ }\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right) \\
|\underline{\mathbf{v}}+\underline{\mathbf{w}}|^{2} & =|\underline{\mathbf{v}}|^{2}+|\underline{\mathbf{w}}|^{2}
\end{aligned}
$$

norm. (unit) vector or "versor" $\quad \underline{\mathbf{u}}=\underline{\mathbf{u}} /|\mathbf{u}| \quad$ pronounced "u hat"

Unit Vectors

$$
\begin{array}{rlr}
\underline{\mathbf{v}}=x \underline{\mathbf{i}}+y \mathbf{j}+\mathbf{z} \underline{\mathbf{k}} & \\
\underline{\mathbf{i}} \cdot \underline{i}=\mathbf{j} \cdot \mathbf{j}=\underline{\mathbf{k}} \cdot \underline{\mathbf{k}}=\mathbf{l} & \text { from scalar product rule } \\
\underline{\mathbf{i}} \cdot \mathbf{j}=\underline{\mathbf{k}} \text { and } \mathbf{j} \cdot \underline{\mathbf{k}}=\underline{\mathbf{i}} \text { and } \underline{\mathbf{k}} \cdot \underline{\mathbf{i}}=\mathbf{j} & & \text { from scalar product rule }
\end{array}
$$

$$
\text { Hence by multiplying out } \quad \underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Scalar (dot ${ }^{\circ}$) Product

Vector (cross) Product

$$
\underline{\mathbf{v}} \times \underline{\mathbf{w}}=|\underline{\mathbf{v}}||\underline{\mathbf{w}}| \sin \theta \underline{\hat{\mathbf{u}}} \quad \text { this is a vector quantity }
$$

$\underline{\hat{u}}$ is the unit vector perpendicular to both $\underline{\mathbf{v}}$ and $\underline{\mathbf{w}}$ (right hand corkscrew rule)
cross products are not commutative : $\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}$
the vector product gives a vector perpendicular to $\underline{\mathbf{v}}$ and $\underline{\mathbf{w}}$ obeying the right hand rule as an example of application $\quad \mathrm{A}_{\Delta}=1 / 2|\underline{\mathbf{v}} \times \underline{\mathbf{w}}|$

$$
\begin{aligned}
& \text { hence } \\
& |\underline{\mathbf{v}} \times \underline{\mathbf{w}}|=|\underline{\mathbf{v}}||\underline{\mathbf{w}}| \sin \theta \quad \text { this is a scalar quantity } \\
& \underline{v} \times \underline{w}=i\left|{ }_{w 2}{ }_{w 3}{ }_{w 3}\right|-j\left|v{ }_{w 1}{ }^{v 3}{ }_{w 3}\right|+k\left|v{ }_{w 1}{ }^{v 2}{ }_{w 2}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\mathbf{v}} \cdot \underline{\mathbf{w}}=|\underline{\mathbf{v}}||\underline{\mathbf{w}}| \cos \theta \quad \text { this is a scalar quantity } \\
& \text { by } x \text { out in unit vector form } \quad \underline{\mathbf{v}} \cdot \underline{\mathbf{w}}=\mathbf{v}_{1} \mathbf{w}_{\mathbf{1}}+\mathrm{v}_{\mathbf{2}} \mathrm{w}_{\mathbf{2}}+\mathrm{v}_{\mathbf{3}} \mathrm{w}_{\mathbf{3}} \\
& \cos \theta=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3} /|\underline{\mathbf{v}}||\underline{\mathbf{w}}| \\
& \text { if } v \text { and } w \text { parallel } \\
& \text { if } v \text { and } w \text { perpendicular } \\
& \underline{\mathbf{v}} \cdot \underline{\mathbf{w}}=x \underline{i}+y \mathbf{j}+z \underline{\mathbf{k}} \\
& \text { resolved part } \underline{\mathbf{v}} \text { in direction } \underline{\mathbf{w}}=\underline{\mathbf{v}} \underline{\mathbf{w}} /|\mathbf{w}|
\end{aligned}
$$

Vectors 3 - Equation Line

A point with position vector
and let direction vector be

$$
\begin{aligned}
& \underline{\mathbf{a}}=a_{1} \underline{\underline{i}}+a_{2} \boldsymbol{j}+a_{3} \underline{\mathbf{k}} \\
& \underline{\mathbf{v}}=v_{1} \underline{\mathbf{i}}+v_{2} \boldsymbol{j}+v_{3} \underline{\mathbf{k}} \\
& \underline{\mathbf{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}} \quad
\end{aligned} \quad \text { where } \underline{\mathbf{b}}=\underline{\mathbf{v}}-\underline{\mathbf{a}} \quad l
$$

Parametric Form

$$
\begin{aligned}
& x=x_{0}+\lambda \ell \\
& y=y_{0}+\lambda m \\
& z=z_{0}+\lambda n
\end{aligned}
$$

Cartesian Equation

$$
\left(x-x_{0}\right) /_{\ell}=\left(y-y_{0}\right) /_{m}=\left(z-z_{0}\right) /_{n}
$$

Vector Equation Plane

$$
\begin{aligned}
& \underline{\mathbf{a}} \text { is any point on the plane } \\
\mathbf{r}= & \underline{\mathbf{a}}+\lambda \underline{\mathbf{u}}+\mu \underline{\mathbf{v}} \quad \text { not } a \text { lot of use } \\
\text { let } \underline{\mathbf{n}}= & \underline{\mathbf{u}} \times \underline{\mathbf{v}} \quad \text { be a normal to the plane } \\
\mathbf{r} \cdot \mathbf{n}= & \mathbf{a} \cdot \mathbf{n} \\
& \underline{\mathbf{r}}-\underline{\mathbf{a}} \text { is a vector in the plane } \\
& \text { and the two are perpendicular }
\end{aligned}
$$

Cartesian Equation Plane

$$
a x+b y+c z+d=0 \quad d=-\underline{\mathbf{a}} \cdot \underline{\mathbf{n}}
$$

Notes

Determinants

Value associated with square matrix that determines if a set of linear equations have a solution. The determinant of square matrix \mathbf{A} is written $|\mathbf{A}|$

The determinant of the Identity matrix $\left|\mathbf{I}_{\mathbf{n}}\right|=\mathbf{I}$ (one)
The determinant of the tranpose matrix $\left|\mathbf{A}^{\mathbf{T}}\right|=|\mathbf{A}|$ (the original matrix)
The determinant of the inverse matrix $\left|\mathbf{A}^{-1}\right|={ }^{1} /|\mathbf{A}|$
$|\mathbf{A B}|=|\mathbf{A}||\mathbf{B}|$ (determinants are distributive in multiplication)
$|\mathbf{c} \mathbf{A}|=c^{n}|\mathbf{A}|$ (for an $n \times n$ matrix)
$|\overline{\mathbf{A}}|=\overline{\mathbf{A} \mid}$ (the det. of a complex conjugate $=$ complex conjugate of the det.)
The determinant of square matrix $\operatorname{det} \mathbf{A}$ or $|\mathbf{A}|$ is a scale factor under linear transform.

$$
|\mathbf{A}|=a d-b c \quad \text { for } \mathbf{A}=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]
$$

A minor M_{ij} of matrix \mathbf{A} is determinant of sub matrix after removing $i^{\text {th }}$ row $\& j^{\text {th }}$ column.

Notes on Determinants (quick fixes to calculate the determinant)

Switching two rows or two columns changes the sign of the determinant.
Scalars can be factored out.
Adding or subtracting a row (or column) to another row (or column) doesn't change determinant. Hence multiples of rows (or columns) can be added to other rows (or columns).

Swapping row with columns doesn't change the determinant.
A determinant with a zero row or column has value 0 .
If any two rows (or columns) are identical or in proportion the determinant is zero. (this indicates we have an underspecified system, so inverse matrix does not exist)

Matrices A matrix is an array of numbers with n rows and m columns.

$$
\begin{aligned}
\mathbf{A}^{+}-\mathbf{B} & =\mathbf{B}^{+} \mathbf{+} & & \mathbf{A} \text { and } \mathbf{B} \text { must be of the same order } \\
\mathbf{A}(\mathbf{B}+\mathbf{C}) & =\mathbf{A B}+\mathbf{A C} & & \\
\mathbf{A}_{(\mathbf{n \times m})} \times \mathbf{B}_{(\mathbf{m \times p})} & =\mathbf{C}_{(\mathrm{n} \times \mathrm{p})} & & \text { rows } \times \text { columns } \\
\mathbf{A} \times \mathbf{B} & \neq \mathbf{B} \times \mathbf{A} & & \text { assumming the multiplication actually exists. } \\
\text { A half of } \mathbf{A} & =1 / 2 \mathbf{A} & & n b . \mathbf{A}_{\mathbf{2}} \text { is undefined while } 1 / 2 \mathbf{A} \text { is a scalar multiplication. }
\end{aligned}
$$ The identity matrix is termed I. It is a square matrix with diagonal "I"s.

$\mathbf{A} \times \mathbf{I}=\mathbf{A}$

$$
\mathbf{I} \times \mathbf{A}=\mathbf{A}
$$

I has 7 colleagues which rg writes $\mathbf{I}_{\text {ref.x }} \mathbf{I}_{\text {ref. } \mathbf{y}} \mathbf{I}_{\text {rot90 }} \mathbf{I}_{\text {rot -90 }} \mathbf{I}_{\text {rot } 180} \mathbf{I}_{\text {ref. } \mathbf{y}=\mathbf{x}} \mathbf{I}_{\text {ref. } \mathbf{y}=-\mathrm{x}}$
The determinant of square matrix $\operatorname{det} \mathbf{A}$ or $|\mathbf{A}|$ is a scale factor under linear transform.

$$
\operatorname{det} \mathbf{A}=a d-b c \quad \text { for } \mathbf{A}=\left[\begin{array}{cc}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & d
\end{array}\right]
$$

A minor $M_{i j}$ of matrix \mathbf{A} is determinant of sub matrix after removing $i^{\text {th }}$ row \& $j^{\text {th }}$ column. A cofactor entry C_{ij} is a "signed minor". A matrix of cofactors is termed the conjugate The transpose of a matrix $\mathbf{A}^{\mathbf{T}}$ is the matrix formed where \mathbf{A}_{ij} becomes \mathbf{A}_{ij}
$(\mathbf{A} \times \mathbf{B})^{\mathbf{T}}=\mathbf{B}^{\boldsymbol{\top}} \times \mathbf{A}^{\boldsymbol{\top}} \quad$ Note the exchange of \mathbf{A} and \mathbf{B}

The transpose of a matrix of cofactors is termed the adjugate.
The adjugate matrix divided by scalar quantity $\operatorname{det} \mathbf{A}$ gives the inverse \mathbf{A}^{-1}
$A \times A^{-1}=I$
\mathbf{A}^{-1} is the inverse of \mathbf{A} which must be square matrix.
$(\mathbf{A} \times \mathbf{B})^{-\mathbf{I}}=\mathbf{B}^{-1} \times \mathbf{A}^{-1} \quad$ Note the exchange of \mathbf{A} and \mathbf{B}
The inverse exists if $\operatorname{det} \mathbf{A}$ is non singular $\operatorname{det} \mathbf{A} \neq 0$
Assume \mathbf{B} is unknown and \mathbf{A} and \mathbf{C} known where $\mathbf{A} \times \mathbf{B}=\mathbf{C}$
then $\mathbf{B}=\mathbf{A}^{-1} \times \mathbf{C} \quad$ and rhs can be fully determined.
A matrix can have complex elements.
The conjugate transpose of such a matrix is termed the adjoint \mathbf{A}^{*} or $\mathbf{A}^{\dagger}=(\overline{\mathbf{A}})^{\boldsymbol{T}}=\overline{\mathbf{A}}^{\boldsymbol{\top}}$.

Notes on Determinants (quick fixes to calculate the determinant)
Adding or subtracting row or column to another row or column doesn't change determinant. Swapping row with columns doesn't change the determinant. If any two rows or columns are identical or in proportion the determinant is zero. (this indicates we have an underspecified system, so inverse matrix does not exist)

Notes
Note transforming matrix \times the matrix to be transformed - "other way round" isn't consistent. The order of operations for functions and transformations is always right to left.

Transformations

let $\mathrm{v} \rightarrow \mathrm{Mv}$ where v is the appropriate column matrix
Rotation through θ about origin

and multiplying out the two matrices will give us the circular addition formulae Reflection in $y=x \tan \theta$

$$
M=\left[\begin{array}{c}
\cos 2 \theta \\
\sin 2 \theta \\
\sin 2 \theta \\
-\cos 2 \theta
\end{array}\right]
$$

Representation Complex Numbers by Matrices

let $\mathbf{z}=a+i b$ be represented by $a\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]+b\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \dagger$
Hence $\mathbf{z}=a+i b$

$$
=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

So $z^{*} \quad=\quad \mathrm{a}-\mathrm{ib}$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
a & b \\
& -b \\
= & a
\end{array}\right] \\
& =\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]^{\top}
\end{aligned}
$$

hence conjugate represented by the transpose matrix
Further $|z|^{2}=a^{2}+b^{2}$

$$
=\left|\begin{array}{ll}
\mathbf{a} & -\mathbf{b} \\
\mathbf{b} & \mathbf{a}
\end{array}\right|
$$

so the modulus ${ }^{2}$ is represented by the determinant
Finally we can calculate $\left[\begin{array}{cc}\mathbf{a}^{-b} & -\mathbf{b} \\ b^{2} & a^{-1}\end{array}\right]^{-1}$

$$
\begin{aligned}
& =1 / a^{2}+\mathbf{b}^{2}\left[{ }^{a}-b_{b}^{b}\right] \\
& =a^{-i b} / a^{2}+b^{2} \\
& =z^{-1} \text { as expected }
\end{aligned}
$$

Notes

${ }^{\dagger}$ These are the matrices \mathbf{I} and $\mathbf{I}_{\text {rot-90 }}$
The Jacobian matrix satisfying "Cauchy-Riemann" takes this form for mappings $\mathrm{P}^{2} \rightarrow \mathrm{P}^{2}$. The elements of matrices can be complex numbers or even matrices.

Practical Example of Matrices

But if they choose a combined shop it doesn't matter which. $2490 \quad 2490$

Notes

Transformations - Combined Transformations

If point P, coord $\left(P_{x}, P_{y}\right)$ transforms to $Q\left(Q_{x}, Q_{y}\right)$ then the matrix relationship is $\mathbf{T} \times \mathbf{P}=\mathbf{Q}$ where \mathbf{T} is a 2×2 matrix, and \mathbf{P} and \mathbf{Q} are $2 x 1$ matrices (the coordinates) Such affine transformations (preserve straight lines and areas) can be extended to $P Q R \ldots$ As all rigid body movements are rotations, translations or a combination of the two. and setting aside a detailed matrix analysis, there are just two restrictions to consider

1) Chiral shapes are not identical to their mirror images.
2) Translations cannot be represented by a 2×2 matrix

These restrict which combined transformations can be represented by a single transform. In general $\mathbf{T}_{1} \times \mathbf{T}_{\mathbf{2}} \neq \mathbf{T}_{\mathbf{2}} \times \mathbf{T}_{1}$ unless otherwise stated.

if and only if the centre of rotation is at the intersect of the two lines of reflection. ${ }^{\ddagger}$ The order of the transforms affects the degree of rotation.

Translation \quad Translation \quad Translation
Fairly obviously the combined vector translation is the vector sum of the two. Order irrelevant.
Reflection \quad Reflection $\equiv \quad$ Translation
where the reflection lines are parallel (centre of rotation at infinity)

Translation	+	Reflection	\equiv	does not exist
Reflection	+	Translation	\equiv	does not exist

because one reflection changes the chirality of the object. Reflections must be "undone".

Notes

${ }^{\dagger}$ Although $\mathbf{T}_{1} \times \mathbf{T}_{\mathbf{2}} \neq \mathbf{T}_{\mathbf{2}} \times \mathbf{T}_{1}$ the final vector inverts and there is a sign change.
This is a key result because students are often asked to find the "second" transform.

Counting

No.	Greek	Latin
I	mono	uni
2	duo	bi
3	tri	tri
4	tetra	quad
5	penta	quin
6	hexa	sex
7	hepta	sept
8	octo	oct
9	nona	non
10	deca	dec

These booklets are written and produced by Robert Goodhand
Although the formulae and expressions given have been individually derived and checked errors do creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com

