Mr. G's little booklet on

Vectors and Matrices

Issue 5.0

9/16

∕∕ rg

Mr. G's Little Booklets are

- I Symbols and Definitions
- 2 Circular Functions
- **3** Hyperbolic Functions
- 4 Complex Numbers
- 5 Calculus
- 6 Series
- 7 Venn Diagrams
- 8 Logic and Propositional Calculus
- 9 Vectors and Matrices
- **10** Probability
- **II Laplace and Fourier Transforms**
- **12 Miscellaneous Aspects of Mathematics**
- **13 Statistical Tables**
- **14 Trigonometric and Logarithmic Tables**
- 15 Investigations General
- **16** Investigations Number

∞ rg

Vectors I - Linear Transformations					
A transformation is linear if					
$T(\mathbf{a}_{1}\mathbf{\underline{v}_{1}}+\mathbf{a}_{2}\mathbf{\underline{v}_{2}})$	=	$a_1T(\underline{v}_1) + a_2T(\underline{v}_2)$			
where Τ: <u>ν</u> αΤ(<u>ν</u>)					
The set of vectors being t	ransfo	ormed are termed the dom	ain and the new set the image.		
Inverse Transfor	Inverse Transformations				
If T is a one-to-one trans	If T is a one-to-one transform then the inverse linear transform T^{-1} exists.				
$If T T^{-1} = T^{-1} T = I$					
Laws of Vector Algebra					
Commutative Law	/				
<u>v</u> + <u>w</u>	=	<u>w</u> + <u>v</u>	Additive		
Associative Law					
$\underline{\mathbf{v}} + (\underline{\mathbf{w}} + \underline{\mathbf{x}})$	=	(<u>v</u> + <u>w</u>) + <u>x</u>			
m(n <u>v</u>)	=	mn(<u>v</u>)			
	=	n(m <u>v</u>)	Multiplicative		
Distributive Law					
(m+n) <u>v</u>	=	m <u>v</u> + n <u>v</u>	Additive		
m(<u>v</u> + <u>w</u>)		m <u>v</u> + m <u>w</u>	Multiplicative		

Notes

Neither vectors nor matrices obey the product commutative law.

Operations that do obey are more the exception than the rule.

eg The "son of Harry's mother" is a different person to the "mother of Harry's son".

Vectors 2 Magnitude and Modulus Define the vector $\underline{\mathbf{V}}$ by the matrix $\begin{bmatrix} \mathbf{v} & \mathbf{v} \\ \mathbf{v}^2 & \mathbf{v}_3 \end{bmatrix}$ $|\mathbf{v}| = \sqrt{(v_1^2 + v_2^2 + v_3^2)}$ $|\mathbf{v} + \mathbf{w}|^2 = |\underline{\mathbf{v}}|^2 + |\underline{\mathbf{w}}|^2$ norm. (unit) vector or "versor" $\hat{\mathbf{u}} = \frac{\mathbf{u}}{|\mathbf{u}|}$ pronounced "u hat" **Unit Vectors** $\mathbf{v} = \mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{i} + \mathbf{z}\mathbf{k}$ <u>i.i</u> =j.j=<u>k.k</u> = | from scalar product rule $\underline{i} \cdot \underline{j} = \underline{k}$ and $\underline{j} \cdot \underline{k} = \underline{i}$ and $\underline{k} \cdot \underline{i} = \underline{i}$ from scalar product rule Hence by multiplying out $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ Scalar (dot •) Product $\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta$ this is a scalar quantity by x out in unit vector form $\mathbf{v} \bullet \mathbf{w} = \mathbf{v}_1 \mathbf{w}_1 + \mathbf{v}_2 \mathbf{w}_2 + \mathbf{v}_3 \mathbf{w}_3$ $\cos \theta = v_1 w_1 + v_2 w_2 + v_3 w_3 / |\mathbf{v}| |\mathbf{w}|$ $\underline{\mathbf{v}} \cdot \underline{\mathbf{w}} = \mathbf{x} \mathbf{\underline{i}} + \mathbf{y} \mathbf{\underline{j}} + \mathbf{z} \mathbf{\underline{k}}$ if v and w parallel if v and w perpendicular $\mathbf{v} \cdot \mathbf{w} = \mathbf{0}$ resolved part $\underline{\mathbf{v}}$ in direction $\underline{\mathbf{w}} = \underline{\mathbf{v}} \underline{\mathbf{w}} / |_{\mathbf{w}}$ Vector (cross) Product $\mathbf{v} \times \mathbf{w} = |\underline{\mathbf{v}}| |\underline{\mathbf{w}}| \sin \theta \, \underline{\mathbf{\hat{u}}}$ this is a vector quantity $\hat{\mathbf{u}}$ is the unit vector perpendicular to both $\underline{\mathbf{v}}$ and $\underline{\mathbf{w}}$ (right hand corkscrew rule) hence $\underline{\hat{u}} = \underline{u} / |_{u}|$ $|\mathbf{v} \times \mathbf{w}| = |\mathbf{v}| |\mathbf{w}| \sin \theta$ this is a scalar quantity $\underline{\mathbf{v}} \times \underline{\mathbf{w}} = i |_{\mathbf{w}_{2}}^{\mathbf{v}_{2}} |_{\mathbf{w}_{3}}^{\mathbf{v}_{3}} |_{\mathbf{w}_{1}}^{\mathbf{v}_{3}} |_{\mathbf{w}_{3}}^{\mathbf{v}_{3}} |_{\mathbf{w}_{1}}^{\mathbf{v}_{2}} |_{\mathbf{w}_{1}}^{\mathbf{v}_{2}} |_{\mathbf{w}_{1}}^{\mathbf{v}_{2}}$ cross products are not commutative : $\mathbf{v} \times \mathbf{w} = \mathbf{w} \times \mathbf{v}$ the vector product gives a vector perpendicular to $\ {f v}$ and $\ {f w}$ obeying the right hand rule

as an example of application $A_{\Delta} = \frac{1}{2} | \mathbf{v} \times \mathbf{w} |$

Vectors 3 - Equation	on Line			
A point with position vector	<u>a</u>	=	a <u>i</u> +a2 j +a3 <u>k</u>	
and let direction vector be	<u>v</u>	=	v ₁ <u>i</u> +v ₂ j+v ₃ <u>k</u>	
	r	=	<u>a</u> + λ <u>b</u>	where <u>b</u> = <u>v</u> - <u>a</u>
Parametric Form				
	x	=	$x_0 + \lambda \ell$	
	у	=	y ₀ + λ m	
	Z	=	z ₀ + λ <i>n</i>	
			-	
Cartesian Equation				
	$(x - x_0) / \ell$	e = ($(y - y_0) /_m = (z - z)$	- z ₀)/ _n
Vector Equation Pl	ane			
			<u>a</u> is any point on th	he plane
	r	=	<u>a</u> + λ <u>u</u> + μ <u>v</u>	not a lot of use
	let <u>n</u>	=	<u>u × v</u>	be a normal to the plane
	r• n	=	a•n	
			<u>r</u> – <u>a</u> is a vector i	n the plane
			and the two are pe	rpendicular
Cartesian Equation	Plane			
	ax + by +	cz	+ d = 0	d = ¯ <u>a</u> • <u>n</u>
Notes				

Determinants

Value associated with square matrix that determines if a set of linear equations have a solution. The determinant of square matrix \mathbf{A} is written $|\mathbf{A}|$ The determinant of the Identity matrix $|\mathbf{I}_n| = \mathbf{I}$ (one) The determinant of the tranpose matrix $|\mathbf{A}^T| = |\mathbf{A}|$ (the original matrix) The determinant of the inverse matrix $|\mathbf{A}^{-1}| = \mathbf{I}/_{|\mathbf{A}|}$ $|\mathbf{AB}| = |\mathbf{A}| |\mathbf{B}|$ (determinants are distributive in multiplication) $|\mathbf{cA}| = \mathbf{c}^n |\mathbf{A}|$ (for an $n \times n$ matrix) $|\mathbf{\bar{A}}| = |\mathbf{\bar{A}}|$ (the det. of a complex conjugate = complex conjugate of the det..) The **determinant** of square matrix **det** \mathbf{A} or $|\mathbf{A}|$ is a scale factor under linear transform. $|\mathbf{A}| = \mathbf{ad} - \mathbf{bc}$ for $\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$ A **minor** M_{ij} of matrix \mathbf{A} is determinant of sub matrix after removing i th row & j th column.

Notes on Determinants (quick fixes to calculate the determinant)

Switching two rows or two columns changes the sign of the determinant.

Scalars can be factored out.

Adding or subtracting a row (or column) to another row (or column) doesn't change determinan<mark>t.</mark>

Hence multiples of rows (or columns) can be added to other rows (or columns).

Swapping row with columns doesn't change the determinant.

A determinant with a zero row or column has value 0.

If any two rows (or columns) are identical or in proportion the determinant is zero.

(this indicates we have an **underspecified system**, so inverse matrix does not exist)

Page 4

∞ _{rg}

Matrices A matrix is an a	array of numbers with n rows and m columns.			
$\mathbf{A}^{+}_{\mathbf{B}} \mathbf{B} = \mathbf{B}^{+}_{\mathbf{A}} \mathbf{A}$	A and B must be of the same order			
A(B+C) = AB + AC				
$\mathbf{A}_{(n\times m)} \times \mathbf{B}_{(m\times p)} = \mathbf{C}_{(n\times p)}$	rows × columns			
$\mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A}$	assumming the multiplication actually exists.			
A half of $\mathbf{A} = \frac{1}{2}\mathbf{A}$	nb. ${}^{A}I_{2}$ is undefined while $V_{2}A$ is a scalar multiplication			
The identity matrix is termed I . It is a	square matrix with diagonal "I" s.			
$\mathbf{A} \times \mathbf{I} = \mathbf{A}$	$\mathbf{I} \times \mathbf{A} = \mathbf{A}$			
I has 7 colleagues which rg writes $ { m I}_{ m ref.} $	_x I _{ref.y} I _{rot90} I _{rot -90} I _{rot180} I _{ref.y=x} I _{ref.y=-x}			
The determinant of square matrix of	det A or $ \mathbf{A} $ is a scale factor under linear transform.			
det A = ad – bc	for $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$			
A minor M _{ij} of matrix A is determinant of sub matrix after removing i th row & j th column.				
A cofactor entry C _{ij} is a "signed mir	nor". A matrix of cofactors is termed the conjugate			
The transpose of a matrix \mathbf{A}^{T} is the	e matrix formed where A_{ij} becomes A_{ji}			
$(\mathbf{A} \times \mathbf{B})^{T} = \mathbf{B}^{T} \times \mathbf{A}^{T}$	Note the exchange of ${f A}$ and ${f B}$			
The transpose of a matrix of cofacto	ors is termed the adjugate .			
The adjugate matrix divided by scalar o	quantity det A gives the inverse A^{-1}			
$\mathbf{A} \times \mathbf{A}^{-1} = \mathbf{I}$	A^{-1} is the inverse of A which must be square matrix.			
$(\mathbf{A} \times \mathbf{B})^{-1} = \mathbf{B}^{-1} \times \mathbf{A}^{-1}$	Note the exchange of ${f A}$ and ${f B}$			
The inverse exists if $\det oldsymbol{A}$ is non singu	ılar det A ≠ 0			
Assume B is unknown and A and C	known where $\mathbf{A} \times \mathbf{B} = \mathbf{C}$			
then $\mathbf{B} = \mathbf{A}^{-1} \times \mathbf{C}$	and rhs can be fully determined.			
A matrix can have complex elements.				
The conjugate transpose of such a mat	Trix is termed the adjoint \mathbf{A}^* or $\mathbf{A}^\dagger = (\mathbf{A})^T = \mathbf{A}^T$.			

Notes on Determinants (quick fixes to calculate the determinant)

Adding or subtracting row or column to another row or column doesn't change determinant. Swapping row with columns doesn't change the determinant.

If any two rows or columns are identical or in proportion the determinant is zero.

(this indicates we have an **underspecified system**, so inverse matrix does not exist)

Matrix	Mult	tiplica	atio	n						
	A			B				A x]	B	Transform
			1	ooint þ	point q	1				
I	Ι	0	×	Ι	2	x coord	=	I.	2	Identity
	0	Ι		3	4	y coord		3	4	(enlargement)
I _{ref.y}	-1	0	×	Ι	2	x coord	=	-1	-2	Reflection
	0	Ι		3	4	y coord		3	4	in y-axis
I _{ref.x}	Ι	0	×	I	2	x coord	=	I	2	Reflection
	0	- 1		3	4	y coord		-3	-4	in x-axis
I _{rot 180}	-1	0	×	I	2	x coord	=	-1	-2	180° rotation
	0	- 1		3	4	y coord		-3	-4	enlarge by -1
I _{ref.y = x}	0	Ι	×	Ι	2	x coord	=	3	4	Reflection
	Ι	0		3	4	y coord		I	2	in line y = x
I _{rot.–90}	0	-1	×	Ι	2	x coord	=	-3	-4	90° rotation
	Ι	0		3	4	y coord		I	2	anti-clockwise
I _{rot.90}	0	Ι	×	Ι	2	x coord	=	3	4	90° rotation
	- 1	0		3	4	y coord		-1	-2	clockwise
I _{ref.y = -x}	0	- 1	×	Ι	2	x coord	=	-3	-4	Reflection
	-1	0		3	4	y coord		- 1	-2	in line $y = -x$

Notes

Note transforming matrix \times the matrix to be transformed - "other way round" isn't consistent. The order of operations for functions and transformations is always <u>right</u> to <u>left</u>.

Transformations
let
$$v \rightarrow Mv$$
 where v is the appropriate column matrix
Rotation through θ about origin

$$M = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ \cos\theta \end{bmatrix} = \begin{bmatrix} \sin\theta & \sin\theta \\ \cos\theta \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \\ a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a$$

The elements of matrices can be complex numbers or even matrices.

Prac	tical l	Exan	nple of	Matr	ices						
	Qua	ntity	Matrix		Price	e Mat	rix				
	Bread	Milk	Eggs		Tesco				Tesco		
	2	4	3	Bread	120			Total bill	1080		
				Milk	75						
				Eggs	180						
	Qua	ntity	Matrix		Price	e Mat	rix				
	Bread	Milk	Eggs		Tesco	Asda			Tesco	Asda	
	2	4	3	Bread	120	110		Total bill	1080	1070	
				Milk	75	70					
				Eggs	180	190					
	Qua	ntity	Matrix		Price	e Mat	rix				
	Bread	Milk	Eggs			Tesco	Asda		Tesco	Asda	
Charlie	2	4	3		Bread	120	110		1080	1070	Charlie
Nicole	3	2	5		Milk	75	70		1410	1420	Nicole
					Eggs	180	190				
	But if t	hey ch	oose a corr	ibined s	shop it c	loesn't r	natter v	which.	2490	2490	ł

Notes

Transformations - Combined Transformations

If point P, coord (P_x, P_y) transforms to $Q(Q_x, Q_y)$ then the matrix relationship is $\mathbf{T} \times \mathbf{P} = \mathbf{Q}$ where \mathbf{T} is a 2x2 matrix, and \mathbf{P} and \mathbf{Q} are 2x1 matrices (the coordinates) Such <u>affine</u> transformations (preserve straight lines and areas) can be extended to P Q R... As all rigid body movements are rotations, translations or a combination of the two. and setting aside a detailed matrix analysis, there are just two restrictions to consider

1) Chiral shapes are not identical to their mirror images.

2) Translations cannot be represented by a 2x2 matrix

These restrict which combined transformations can be represented by a single transform. In general $\mathbf{T}_1 \times \mathbf{T}_2 \neq \mathbf{T}_2 \times \mathbf{T}_1$ unless otherwise stated.

A Mapping of C	Combined T	ransforms (rota	tion, refle	ction, translation)			
Studying three transforms gives 9 combinations plus 2 more covering ambiguous outcomes.							
Ist Transform	ransform followed by 2nd Transform equivalent to Single Transform						
Rotation	+	Rotation	≡	Rotation			
where centre Rot _s = mean of centres Rot ₁ and Rot ₂ and Rot _{s θ} = Rot _{1θ} + Rot _{2θ}							
				order irrelevant.			
Rotation	+	Rotation	≡	Translation			
	where Rot _{I 6}	+ Rot $_{2\theta} = 0$ (no	net rotation)			
Rotation	+	Translation	≡	Rotation			
Translation	+	Rotation	≡	Rotation			
	standard con	struction identifies c	entre rotatio	on two similar chiral shapes. [†]			
Rotation	+	Reflection	≡	Reflection			
Reflection	+	Rotation	≡	Reflection			
Reflection	+	Reflection	≡	Rotation			
i f and only if the	e centre of roto	ition is at the interse	ect of the tw	vo lines of reflection. ‡			
The order of the tr	ransforms affec	ts the degree of rot	ation.				
Translation	+	Translation	≡	Translation			
Fairly obviously the	combined vec	tor translation is the	e vector sum	of the two. Order irrelevant.			
Reflection	+	Reflection	≡	Translation			
where the reflectio	n lines are par	allel (centre of rotat	ion at infinit	ty)			
Translation	+	Reflection	≡	does not exist			
Reflection	+	Translation	≡	does not exist			
because one reflec	tion changes th	ne chirality of the ob	ject. Reflect	ions must be "undone".			
Notes							

[†] Although $\mathbf{T_1 \times T_2} \neq \mathbf{T_2 \times T_1}$ the final vector inverts and there is a sign change.

 ‡ This is a key result because students are often asked to find the "second" transform.

Counting

No.	Greek	Latin
Ι	mono	uni
2	duo	bi
3	tri	tri
4	tetra	quad
5	þenta	quin
6	hexa	sex
7	hepta	sept
8	octo	oct
9	nona	non
10	deca	dec

These booklets are written and produced by Robert Goodhand

Although the formulae and expressions given have been individually derived and checked errors do

creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com

∕∕ rg