Mr. G's little booklet on

Probability and Statistics

Issue 5.0

10/16

∕∕ rg

Mr. G's Little Booklets are

- I Symbols and Definitions
- 2 Circular Functions
- **3** Hyperbolic Functions
- 4 Complex Numbers
- 5 Calculus
- 6 Series
- 7 Venn Diagrams
- 8 Logic and Propositional Calculus
- 9 Vectors and Matrices
- **10** Probability
- **II Laplace and Fourier Transforms**
- **12 Miscellaneous Aspects of Mathematics**
- **13 Statistical Tables**
- **14 Trigonometric and Logarithmic Tables**
- 15 Investigations General
- **16** Investigations Number

∞ rg

Probability

P(A)	\geq	0	for every event A	Axiom I
P(S)	=	I	for the CERTAIN event S	Axiom 2
P(A)	=	n(A) _/ n(U)		Axiom 3
$P(A \cup B)$	=	P(A) + P(B)	for mutually exclusive events A and B	corollary I
P(Ø)	=	0		Theorem I
P(A ∩ B ')	=	$P(A) - P(A \cap B)$	because $A \cap B \& A \cap B'$ are disjoint	Theorem 2
P(B ')	=	I - P(B)	by putting $A = S$ in theorem 2	Theorem 3
$P(A \cup B)$	=	P(A) + P(B) - P(A)	A ∩ B)	Theorem 4
Independent	Εv	ents		
if $P(A \cap B)$	=	$P(A) \times P(B)$	then events A and B are independent	t
If events A and B	are	independent then so a	are events A and B'	Theorem 5
If events A and B	are	independent with non	zero probabilities then $A \cap B \neq \emptyset$	Theorem 6
Conditional P	ro	bability and Ba	ayes Theorem	
define P(A B)	=	conditional probability	y of A given that B has already occurre	ed
Let P(A ∩ B)		$P(A B) \times P(B)$		
Hence P(A B)	=	$P(A \cap B)/P(B)$		
Also P(B A)	=	$P(B \cap A)/P(A)$	exchanging A and B	
P(A B) /P(B A)	=	^{P(A)} / _{P(B)}	by commutative law $A \cap B = B \cap A$	
So P(A B)	=	P(A) P(B A) / P(B)		
So P(A B)	=	$P(A) P(B A) / P(A \cap B)$	B) + P(A'∩B)}	
So P(A B)	=	P(A) P(B A) / P(A) P(A)	(B A) + P(A') P(B A')	Bayes
Note the derivation of the useful relationship $P(B) = P(B A) \times P(A) + P(B A') \times P(A')$				
This is the probability that event A which has occurred is a result of cause B.				
If B is the new evidence then $P(B A)/P(B)$ is called the Likelihood Ratio				
nb if A and B are independent then $P(A B) = P(A)$				
nb if ${\sf A}$ and ${\sf B}$ are	<u>m</u>	utually exclusive then	$P(A \mid B) = 0$	

Notes

mutually exclusive events may be viewed as **A OR** B **OR** C etc.

inedependent events may be viewed as A AND (then) B AND (then) C etc.

	Strict Permutations (cf general permutations) $^{n}P_{r} = {^{n!}}/_{(n-r)!}$																
Co	Consider Set S with elements $\{C, D, E, F\}$ $n(A) = 4$																
Аp	ermu	tatio	n is a	sequence	e cor	ntaini	ng each e	leme	nt of	a se	t once	e and	l onl	y ond	ce.		
For	set s	ize n	the	number o	f per	muto	itions is n	(in t	this c	ase 4	4 x 3	x 2 x	< =	= 24)			
С	D	Ε	F	D	С	Е	F	Ε	С	D	F		F	С	D	Е	
С	D	F	Е	D	С	F	Е	Ε	С	F	D		F	С	Е	D	
С	Е	D	F	D	Ε	С	F	Ε	D	С	F		F	D	С	Е	
С	Е	F	D	D	Е	F	С	Е	D	F	С		F	D	Е	С	
С	F	D	Е	D	F	С	Е	Е	F	С	D		F	Е	С	D	
С	F	Е	D	D	F	Е	С	Е	F	D	С		F	Ε	D	С	
Сс	mt	oina	itio	ns							ⁿ C.	. = ⁿ	^{1!} //	n)!	writ	te (n ")
A co	ombii	natio	n is a	n unorde	red s	ubse	t of a spe	cified	l num	nber	of dis	tinct (elen	n –r) : nents		.~ (r/
⁴ C		=4		⁴ C ₂	=6			⁴ C	3	=4				⁴ C	4	=	
{C]		{E}		{C,D}	{C	,F}	{D,F}	{C	,D,E	}	{D,	E,F}	I	{C	,D,E	,F}	
{D]	}	{F}		{C,E}	{D	,E}	{E,F}	{C	,D,F	;}	{C,	E,F}					
Power Sets																	
Po	we	r Se	ets														
<mark>Ро</mark> For	we the s	r So et S	ets the p	oowerset o	of S i:	s P(S,) and is th	e se	t of a	ıll sut	osets	incluc	ding	the i	null s	et.	
Po For It is	we the s thus	r So et S the	e ts the p union	oowerset o n of all the	of S is e con	s P(S, nbina) and is th tions of a	e sei Il size	t of a es plu	III sut	osets i e null	incluc set {	ding }.	the i	null s	et.	
Po For It is The	we the s thus þow	r So et S the er se	e ts the p union et con	oowerset o of all the otains 2 "	of S i: e con elerr	s P(S) nbina nents) and is th tions of a . For n(S)	e se Il sizo =4 t	t of a es plu here	III sub us the are 2	osets e null 2 ⁴ =	incluc set { 16 su	ding }. ıbse	the its.	null s	et.	
Po For It is The {C]	we the s thus pow	r So the the er se {E}	e ts the p union et con	oowerset of of all the otains 2 ⁿ {C,D}	of S is e con elerr {C	s P(S, nbina nents. , F }) and is th tions of a . For n(S) {D,F}	e sei Il sizc =4 t {C	t of a es plu here , D,E	ill sul is the are 2	osets i e null 2 ⁴ = {D,	incluc set { 16 sı E,F}	ding }. ubse	the r ts. {C	null s ,D,E	et. E, F }	
Po For It is The {C] {D	we the s thus pow	r So the er se {E} {F}	e ts the p union et con	oowerset of of all the stains 2 " {C,D} {C,E}	of S in e con elerr {C {D	s P(S) nbina nents. ,F} ,E}) and is th tions of a . For n(S) {D,F} {E,F}	e se Il sizo =4 t {C {C	t of a es plu here ,D,E ,D,F	ill sub us the are 2 :}	osets e null 2 ⁴ = {D, {C,	incluc set { 16 su E,F} E,F}	ding }. ubse	the r ts. {C Plu	null s ,D,E is {	et. E, F } }	
Po For It is The {C] {D]	we the s thus pow	r So the the (E) (F)	ets the p union et con	oowerset of of all the stains 2 " {C,D} {C,E}	of S i: e con elerr {C {D	s P(S) nbina nents. ,F} ,E}) and is th tions of a . For n(S) {D,F} {E,F}	e se sizc =4 t {C {C	t of a es plu here ,D,E ,D,F	ill sul us the are 2 :} :}	osets i e null 2 ⁴ = {D, {C,	incluc set { 16 sı E,F} E,F}	ding }. ubse	the r ts. {C	null s ,D,E is {	et. E,F} }	
Po For It is The {C] {D] It co	we the s thus pow	r So the the er se {E} {F} nal	ets the p union et con ity (oowerset of of all the otains 2 ⁿ {C,D} {C,E} (Size) the powe	of S is e con elerr {C {D	s P(S, nbina nents. ,F} ,E}) and is th tions of a . For n(S) {D,F} {E,F}	e sei Il sizo =4 t {C {C	t of a es plu here ,D,E ,D,F	rdina	osets e null 2 ⁴ = {D, {C,	incluc set { I 6 su E,F} E,F} an th	ding }. ubse	the r ts. {C plu	null s ,D,E Is {]	et. 5,F} }	
Po For It is The {C] {D It co The	we the s thus pow fow	r So the the er se {E} {F} nali oved	ets the p union et con ity (that valid p	oowerset of of all the stains 2 " {C,D} {C,E} (Size) the powe for finite s	of S is e con elerr {C {D	s P(S) nbina nents ,F} ,E} of a s and a) and is th tions of a . For n(S) {D,F} {E,F} set has a	e se Il sizo =4 t {C {C highe	t of a es plu here ,D,E ,D,F er cai	ll sub is the are 2 :} :}	osets e null 2 ⁴ = {D, {C,	incluc set { 16 sı E,F} E,F} an th	ding }. ubse	the i ts. {C plu	null s ,D,E Is {]	et. E,F} }	
Po For It is The {C] {D] It co The If w	we the s thus pow rdi n pr proc e sta	r So the the er se {E} {F} nal oved of is v	ets the p union et con ity (that valid p th S	powerset of of all the stains 2 ⁿ $\{C,D\}$ $\{C,E\}$ (Size) the powe for finite s	of S is e con elerr {C {D	s P(S) nbina nents. ,F} ,E} of a s <u>and a</u>) and is th tions of a For n(S) {D,F} {E,F} set has a also infinit t where	the set $ size =4 t {C {C highe e se \approx_1 >$	t of a es plu here ,D,E ,D,F er can ts.	rdina	osets e null 2 ⁴ = {D, {C,	incluc set { I 6 su E,F} E,F}	ding }. ubse	the r ts. {C plu	null s ,D,E Is {]	et. 5, F }	
Po For It is The {C] {D It co The If w The	we the s thus pow on pow rdi	r So the the er se {E} {F} nal oved of is v rt wi	ets the p union et con ity (that valid p th & of po	powerset of all the stains 2 " {C,D} {C,D} C,E (Size) the powe for finite states the states of a	of S is e con elerr {C {D erset sets en 2 line,	s P(S) nbina nents. ,F} ,E} of a s and a n{ X) and is th tions of a . For n(S) {D,F} {E,F} set has a also infinit t, where [], is den	the set $ sizc =4 t {C {C highe e set z = 1 $	t of a es plu here ,D,E ,D,F er cai ts. > ∞ C w	nll sub us the are 2 :} :} rdina here	osets i e null 2 ⁴ = {D, {C,	incluc set { 16 sı E,F} E,F} an th	ding }. ubse	the i ts. {C plu	null s ,D,E Is {	et. E,F} }	
Po For It is The {C] {D] (Ca It co The If w The It w	we the s thus pow for an pr proc e sta num ould	r So the the er se {E} {F} nal oved of is v rt wi be n	ets the p union et con ity (that valid p th % of po eat to	powerset of of all the stains 2 " $\{C,D\}$ $\{C,E\}$ (Size) the powe for finite s $c_0 = \infty$ the ints on a p suppose	of S is e con elerr {C {D erset sets en 2 line, that	s $P(S)$ nbina nents. ,F} ,E} of a s and a $m^{\circ} = s$ n{ X t \aleph_{1}) and is the tions of a For n(S) {D,F} {E,F} set has a also infinit to here also infinit to here also infinit	this is	t of a es plu here ,D,E ,D,F er can ts. > ∞ C w s inde	ell sub are 2 } ? rdina here	osets e null 2 ⁴ = {D, {C, lity th	incluc set { I 6 su E,F} E,F} an th	ding }. Jbse	the r ts. {C plu	null s ,D,E Is {]	et. 5,F} }	

Binomial Distribution

$$\left\{ p + (1-p) \right\}^{n} = \sum_{r} \binom{n}{r} p^{r} (1-p)^{n-r}$$

$$where \binom{n}{r} = \binom{n}{r-r}$$

$$\binom{n}{r} = \binom{n}{n-r}$$

$$Theorem 1$$

$$\binom{n}{r-1} + \binom{n}{r} = \binom{n+1}{r}$$

$$Theorem 2$$

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} \dots \binom{n}{n} = 2^{n}$$

$$Theorem 3$$

$$P(r \text{ successes from n trials}) = \binom{n}{r} p^{r} q^{n-r}$$

$$where p + q = 1$$

$$If X \sim B(n,p) \text{ then}$$

$$E(X) = np$$

$$Var(X) = npq$$

Poisson Distribution

$$P(X = r) = e^{-\lambda} \lambda^{r} / r!$$

where X is no. events in given interval and λ is mean no. events in same interval

$$E(X) = \lambda$$
$$Var(X) = \lambda$$

Poisson approximates to the Binomial for n large and p small

Normal Distribution

$$\Phi(z) = \{ \frac{1}{\sqrt{2\pi}} \}_{-\infty} \int^{z} e^{-\frac{1}{2}t^{2}} dt$$
$$= \{ 1 + erf(\frac{z}{\sqrt{2}}) \}$$
$$E(X) = \mu$$
$$Var(X) = \sigma^{2}$$
given X ~ N(μ, σ^{2})
$$Z = \frac{(X - \mu)}{\sigma} \sim N(0, 1)$$

Notes

sech² is a bell shaped distribution occurring in the natural world.

Prope	rti	es of Bir	nor	nial Coe	ffic	cients				
(ⁿ ₀)	+	(ⁿ 1)	+	(ⁿ ₂)	+	•••	+	(ⁿ _n)	=	2 ⁿ
1	+	4	+	6	+	4	+	I	=	2 ⁴ = 16
(ⁿ ₀)	_	(ⁿ 1)	+	(ⁿ 2)	_		(-1) ⁿ	(ⁿ _n)	=	0
1	_	4	+	6	_	4	+	I.	=	0
(ⁿ _n)	+	(ⁿ⁺¹ n)	+	(ⁿ⁺² _n)	+	•••	+	(^{n+m} _n)	=	(^{n+m+1} _n+1)
1	+	5	+	15	+	35	+	70	=	(⁹ ₅) = 126
(ⁿ ₀)	+	(ⁿ 2)	+	(ⁿ _4)	+	(ⁿ ₈)	+	•••	=	2 ^{n–1}
1	+	28	+	70	+	28	+	I.	=	2 ⁷ = 128
(ⁿ 1)	+	(ⁿ ₃)	+	(ⁿ 5)	+	(ⁿ 9)	+	•••	=	2 ⁿ⁻¹
9	+	84	+	126	+	36	+	I.	=	2 ⁸ =256
(ⁿ ₀) ²	+	(ⁿ ₁)²	+	(ⁿ ₂) ²	+	•••	+	(ⁿ _n)²	=	(²ⁿ _n)
1	+	16	+	36	+	16	+	I.	=	(⁸ ₄) = 70
(^m ₀)(ⁿ _p)	+	(^m _l)(ⁿ _{p-l})	+	(^m ₂)(ⁿ _{p-2})	+	(^m ₄)(ⁿ _{p-4})	+	(^m _p)(ⁿ ₀)	=	(^{m+n} _p)
1×15	+	7×20	+	21×15	+	35×6	+	35×1	=	(⁷⁺⁶ 4)=715
(1)(ⁿ 1)	+	$(2){n \choose 2}$	+	$(3)(^{n}_{3})$	+	•••	+	(n)(ⁿ _n)	=	n2 ^{n–I}
1×5	+	2×10	+	3×10	+	4×5	+	5×1	=	5×2 ⁴ =80
(1)(ⁿ 1)	_	$(2)\binom{n}{2}$	+		+	•••	(⁻ 1) ⁿ⁺¹	(n)(ⁿ _n)	=	0
1×5	_	2×10	+	3×10	_	4×5	+	5×1	=	0

Notes

To appreciate fully the interpretation of these properties trace them out on Pascal's Triangle

rg

Pas	cal's Ti	riangl	e as d	evelo	ped b	y Isaa	IC Ne	wton			
n =	-5	Ι	-5	15	-35	70	-126	210	-330	495	-715
n =	-4	Ι	-4	10	-20	35	-56	84	-120	165	-220
n =	-3	Ι	-3	6	-10	15	-21	28	-36	45	-55
n =	-2	Ι	-2	3	-4	5	-6	7	-8	9	-10
n =	-1	Ι	- 1	Ι	- 1	I	- 1	Ι	-1	I	-1
n =	0	Ι	0	0	0	0	0	0	0	0	0
n =	1/2	Ι	۱/ ₂	- / ₈	/ ₆	⁻⁵ / ₁₂₈	⁷ / ₂₅₆	⁻²¹ / ₁₀₂₄	³³ / ₂₀₄₈	⁻⁴²⁹ / ₃₂₇₆₈	⁷¹⁵ / ₆₅₅₃₆
n =	I	Ι	Ι	0	0	0	0	0	0	0	0
n =	2	Ι	2	Ι	0	0	0	0	0	0	0
n =	3	Ι	3	3	Ι	0	0	0	0	0	0
n =	4	Ι	4	6	4	Ι	0	0	0	0	0
n =	5	Ι	5	10	10	5	Ι	0	0	0	0
n =	6	Ι	6	15	20	15	6	I	0	0	0
n =	7	I	7	21	35	35	21	7	I	0	0
n =	8	Ι	8	28	56	70	56	28	8	I	0
n =	9	I	9	36	84	126	126	84	36	9	
n =	10	Ι	10	45	120	210	252	210	120	45	10
n =	11	Ι	П	55	165	330	462	462	330	165	55
n =	12	Ι	12	66	220	495	792	924	792	495	220
n =	13	Ι	13	78	286	715	1287	1716	1716	1287	715
n =	14	Ι	14	91	364	1001	2002	3003	3432	3003	2002
n =	15	Ι	15	105	455	1365	3003	5005	6435	6435	5005

Notes

Newton extended Pascal's triangle into negative values.

He also interpolated between integers to derive terms for fractional values of n.

We can derive terms from the binomial expansion $1 + nx + \frac{n(n-1)x^2}{2!} + \frac{n(n-1)(n-2)x^3}{3!}$...

Definition of Moments of a Distribution

Sample variate X has a distribution P(x), known population mean μ and variance σ^2

	Population	Sample	Unbiased estimate
mean	μ	$\mathbf{x} = \sum_{\mathbf{f}} \mathbf{x} / \sum_{\mathbf{f}}$	x
variance	$\sigma^2 = \langle (X - \mu)^2 \rangle$	s _n ²	S _{n-1} ²
discrete	$\sum (\mathbf{x_i}) (\mathbf{x_i} - \mu)^2$	$n^{l}/n \sum (x_{i} - x^{2})^{2}$ (mean square deviation msd)	$ /_{n-1} \sum (x_i - x^{})^2$
continuous	$\int P(x)(x-\mu)^2 dx$		
standard deviation	$\sigma = \sqrt[4]{\sigma^2}$	$s_n = \sqrt[4]{s_n^2}$	s _{n−1} = ⁺ √s _{n−1} ²

Correlation

$$r = S_{xy} / (S_{xx}S_{yy})$$

where $S_{xy} = \sum (x_i - x^{-1})(y_i - y^{-1})$
where $S_{xx} = \sum (x_i - x^{-1})^2$
 $= \sum (x_i^{-2}) - \frac{(\sum x_i)^2}{n}$
where $S_{yy} = \sum (y_i - y^{-1})^2$
 $= \sum (y_i^{-2}) - \frac{(\sum y_i)^2}{n}$

pearson product moment corr. coeff.

Regression

$$y = ax + b$$
$$a = S_{xy}/S_{xx}$$
$$b = y^{-} - ax^{-}$$

regression line y on x

Notes

[†] This is the closest I can get to writing x bar

[‡] This is the
$$\kappa_2$$
 statistic given by $\kappa_2 = {n \choose n-1} s_n^2$

Determ	nination	(r ²) and	Correlat	tion (r)	
		r²	=	0.00 no correlation	
		r	=	0.00 no correlation	
0.00	<	r²	\leq	0.25 very weak correlation	
0.00	<	r	\leq	0.50 very weak correlation	
0.25	<	r²	\leq	0.50 weak correlation	
0.50	<	r	\leq	0.71 weak correlation	†
0.50	<	r²	\leq	0.75 moderate correlation	
0.71	<	r	\leq	0.87 moderate correlation	†
0.75	<	r²	\leq	0.90 strong correlation	
0.87	<	r	\leq	0.95 strong correlation	
0.90	<	r²	\leq	1.00 very strong correlation	
0.95	<	r	\leq	1.00 very strong correlation	
		r²	=	1.00 perfect correlation	
		r	=	1.00 perfect correlation	

Notes

 † These values shouldn't be taken too literally.

Note that correlation does not imply causation

The coefficient of determination r^2 is a measure of the strength of association between two variables, X and Y.

For linear regression, it is the proportion explained by the conjectured model.

The correlation coefficient r is a measure of the degree of linearity between two variables In the case of perfect linear correlation we have $r^2 = r^2$

 r^{2} , the coefficient of determination, is a thing all in its own right

 r^2 is r, the correlation coefficient, squared.

Students often get confused between the two expressions - no idea why.

Greek Alpl	habet	t		Principle/Simplest Use	English	Туре
alpha	A	not used	α	first root of quadratic	а	a
beta	В	Beta function	β	second root of quadratic	b	b
gamma	Г	Gamma function	γ	Euler's constant	g	g
delta	Δ	Difference operator	δ	small increment	d	d
epsilon	Е	not used	3	error	short e	е
zeta	Z	not used	ζ	Riemann zeta function	Z	z
eta	Н	not used	η	efficiency	long e	h
theta	Θ	asymp. tight bound	θ	angle	th	q
iota	Ι	not used	l	imaginary unit	i	i
kappa	K	not used	κ	curvature	k	k
lambda	Λ	diag. matrix eigen-values	λ	failure rate	I	Ι
mu	М	not used	μ	population mean	m	m
nu	N	not used	ν	poisson ratio	n	n
xi	[1]	grand canonical ensemble	ξ	damping coefficient	х	x
omicron	0	limiting behaviour function	0	generally not used	short o	ο
рі	П	Product operator	π	ratio ^C / _d circle	Ρ	р
rho	Р	not used	ρ	correlation coefficient	r	r
sigma	Σ	summation	σ	standard deviation	S	S
tau	Т	not used	τ	mean lifetime	t	t
upsilon	Y	Bessel function	υ	generally not used	u	u
phi	Φ	cumulative function	φ	golden ratio	ph	f
phi (alt.)	θ	not used	φ	normal function scalar potential	ph	j
chi	X	probability function	χ²	chi-squared prob.function	ch	с
psi	Ψ	not used	Ψ	wave function	ps	у
omega	Ω	mathematical constant	ω	angular frequency	long o	w
stigma	с					v
pomega			ω	angular velocity		v

Counting

No.	Greek	Latin
Ι	mono	uni
2	duo	bi
3	tri	tri
4	tetra	quad
5	þenta	quin
6	hexa	sex
7	hepta	sept
8	octo	oct
9	nona	non
10	deca	dec

These booklets are written and produced by Robert Goodhand

Although the formulae and expressions given have been individually derived and checked errors do

creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com

∕∕ rg