Mr. G's little booklet on

Probability and Statistics

Issue 5.0
Prg

10/16

Mr. G's Little Booklets are
I Symbols and Definitions
2 Circular Functions
3 Hyperbolic Functions
4 Complex Numbers
5 Calculus
6 Series
7 Venn Diagrams
8 Logic and Propositional Calculus
9 Vectors and Matrices
10 Probability
II Laplace and Fourier Transforms
12 Miscellaneous Aspects of Mathematics
13 Statistical Tables
14 Trigonometric and Logarithmic Tables
I5 Investigations - General
16 Investigations - Number

Probability

$$
\begin{array}{rlrl}
P(A) & \geq 0 & \text { for every event } A & \text { Axiom 1 } \\
P(S) & =1 & \text { for the CERTAIN event } S & \text { Axiom 2 } \\
P(A) & =n(A) / n(U) & & \text { Axiom 3 } \\
P(A \cup B) & =P(A)+P(B) & \text { for mutually exclusive events } A \text { and } B \text {. corollary 1 } \\
P(\varnothing) & =0 & & \text { Theorem 1 } \\
P\left(A \cap B^{\prime}\right) & =P(A)-P(A \cap B) \text { because } A \cap B \& A \cap B^{\prime} \text { are disjoint } & \text { Theorem 2 } \\
P\left(B^{\prime}\right) & =1-P(B) & \text { by putting A =S in theorem 2 } & \text { Theorem 3 } \\
P(A \cup B) & =P(A)+P(B)-P(A \cap B) & \text { Theorem 4 }
\end{array}
$$

Independent Events

if $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}) \quad$ then events A and B are independent
If events A and B are independent then so are events A and $\mathrm{B}^{\prime} \quad$ Theorem 5
If events A and B are independent with non zero probabilities then $A \cap B \neq \varnothing$ Theorem 6

Conditional Probability and Bayes Theorem

define $P(A \mid B)=$ conditional probability of A given that B has already occurred
Let $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \quad \mathrm{P}(\mathrm{A} \mid \mathrm{B}) \times \mathrm{P}(\mathrm{B})$
Hence $P(A \mid B)=P(A \cap B) / P(B)$
Also $P(B \mid A)={ }^{\mathbf{P}(\mathbf{B} \cap \mathbf{A}) / \mathbf{P}(\mathbf{A}) \quad \text { exchanging } A \text { and } B}$
$\mathbf{P}(\mathbf{A} \mid \mathbf{B}) / \mathbf{P (B | A)}=\mathbf{P}(\mathbf{A}) \mathbf{I}_{\mathbf{P}(\mathbf{B})} \quad$ by commutative law $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
So $P(A \mid B)=P(A) P(B \mid A) / P(B)$
So $P(A \mid B)=P(A) P(B \mid A) \mid\left\{\mathbf{P}(\mathbf{A} \cap \mathbf{B})+P\left(\mathbf{A}^{\prime} \cap \mathbf{B}\right)\right\}$
So $P(A \mid B)=P(A) P(B \mid A) P(A) P(B \mid A)+P\left(A^{\prime}\right) P\left(B \mid A^{\prime}\right)$
Note the derivation of the useful relationship $P(B)=P(B \mid A) \times P(A)+P\left(B \mid A^{\prime}\right) \times P\left(A^{\prime}\right)$ This is the probability that event A which has occurred is a result of cause B. If B is the new evidence then ${ }^{\mathbf{P}(\mathbf{B} \mid \mathbf{A})} \mathbf{P}_{\mathbf{P}(\mathbf{B})}$ is called the Likelihood Ratio nb if A and B are independent then $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$ $n b$ if A and B are mutually exclusive then $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=0$

Notes

mutually exclusive events may be viewed as A OR B OR C etc.
inedependent events may be viewed as A AND (then) B AND (then) C etc.

Strict Permutations (cf general permutations) ${ }^{n} P_{r}={ }^{n!} /(n-r)!$
Consider Set S with elements \{C,D,E,F\} $\quad n(A)=4$
A permutation is a sequence containing each element of a set once and only once.
For set size n the number of permutations is $n!$ (in this case $4 \times 3 \times 2 \times I=24$)

C	D	E	F	D	C	E	F	E	C	D	F	F	C	D	E
C	D	F	E	D	C	F	E	E	C	F	D	F	C	E	D
C	E	D	F	D	E	C	F	E	D	C	F	F	D	C	E
C	E	F	D	D	E	F	C	E	D	F	C	F	D	E	C
C	F	D	E	D	F	C	E	E	F	C	D	F	E	C	D
C	F	E	D	D	F	E	C	E	F	D	C	F	E	D	C

Combinations
${ }^{n} C_{r}={ }^{n!} /_{r!(n-r)!}$ write $\binom{n}{r}$
A combination is an unordered subset of a specified number of distinct elements

${ }^{4} C_{1}$	$=4$	${ }^{4} C_{2}$	$=6$		$4^{4} C_{3} \quad=4$	${ }^{4} C_{4} \quad=1$	
$\{C\}$	$\{E\}$	$\{C, D\}$	$\{C, F\}$	$\{D, F\}$	$\{C, D, E\}$	$\{D, E, F\}$	$\{C, D, E, F\}$
$\{D\}$	$\{F\}$	$\{C, E\}$	$\{D, E\}$	$\{E, F\}$	$\{C, D, F\}$	$\{C, E, F\}$	

Power Sets

For the set S the powerset of S is $P(S)$ and is the set of all subsets including the null set. It is thus the union of all the combinations of all sizes plus the null set $\}$.
The power set contains 2^{n} elements. For $n(S)=4$ there are $2^{4}=16$ subsets.
\{C\}
\{E\}
\{C,D\}
$\{C, F\}$
\{D,F\}
\{C,D,E\}
\{D,E,F\}
\{C,D,E,F\}
\{D\}
$\{F\}$
$\{C, E\} \quad\{D, E\}$
$\{E, F\}$
\{C,D,F\}
\{C,E,F\}
plus \{ \}

Cardinality (Size)

It can proved that the powerset of a set has a higher cardinality than the original set.
The proof is valid for finite sets and also infinite sets.
If we start with $\aleph_{o}=\infty$ then $2^{\infty}=\aleph_{1}$ where $\aleph_{1}>\infty$
The number of points on a line, $\mathrm{n}\{\mathrm{X}\}$, is denoted C where $\mathrm{C}>\aleph_{\circ}$ It would be neat to suppose that $\aleph_{1}=C$ but this is indeterminate within set theory. That is you can assume it to be either true or false and neither will lead to a contradiction.

Binomial Distribution

$$
\begin{array}{rlrl}
\{p+(I-p)\}^{n} & =\sum\binom{n}{r} p^{r}(I-p)^{n-r} & \\
\text { where }\binom{n}{r} & ={ }^{n} C_{r} & \\
\binom{n}{r} & =\left(\begin{array}{c}
n-r
\end{array}\right) & \text { Theorem I } \\
\binom{n}{r-1}+\binom{n}{r} & =\binom{n+1}{r} & & \text { Theorem 2 } \\
\binom{n}{0}+\binom{n}{1}+\binom{n}{2} \ldots\binom{n}{n} & =2^{n} & & \text { Theorem 3 } \\
P(\text { r successes from } n \text { trials }) & =\binom{n}{r} p^{r} q^{n-r} & \text { where } p+q=1 & \\
\text { If } X \sim B(n, p) \text { then } & & \\
E(X) & =n p & & \\
\operatorname{Var}(X) & =n p q & &
\end{array}
$$

Poisson Distribution

$$
P(X=r)=e^{-\lambda} \lambda^{r} / r!
$$

where X is no. events in given interval and λ is mean no. events in same interval

$$
\begin{aligned}
E(X) & =\lambda \\
\operatorname{Var}(X) & =\lambda
\end{aligned}
$$

Poisson approximates to the Binomial for n large and p small

Normal Distribution

$$
\begin{aligned}
\Phi(\mathrm{z}) & =\left\{{ }^{1} / \sqrt{(2 \pi)}\right\} \\
& \}-\infty \int^{\mathbf{z}} \mathrm{e}^{-1 / 2 t^{2}} \mathrm{dt} \\
& =\left\{1+\operatorname{erf}\left({ }^{\mathrm{z}} / \sqrt{ } 2\right)\right\} \\
\mathrm{E}(\mathrm{X}) & =\mu \\
\operatorname{Var}(\mathrm{X}) & =\sigma^{2}
\end{aligned}
$$

$$
\text { given } X \sim N\left(\mu, \sigma^{2}\right)
$$

$$
Z=(X-\mu) /_{\sigma} \sim N(0, I)
$$

Notes

sech^{2} is a bell shaped distribution occurring in the natural world.

Properties of Binomial Coefficients

$\binom{$ n }{0}	+	$\left({ }^{\mathrm{n}} \mathrm{I}^{\text {) }}\right.$	+	$\left({ }^{n} 2\right)$	+	\ldots	+	$\binom{$ n }{$n}$	=	$2^{\text {n }}$
1	+	4	+	6	+	4	+	1	=	$2^{4}=16$
$\left({ }^{\text {n }}\right.$)	-	$\binom{$ n }{1}	+	$\binom{$ n }{2}	-	\ldots	$\left({ }^{(1)}{ }^{\text {n }}\right.$	$\binom{$ n }{n}	=	0
1	-	4	+	6	-	4	+	1	=	0
$\binom{n}{n}$	+	$\left({ }^{n+1}{ }_{n}\right)$	+		+	...	+	$\left({ }^{n+m}{ }_{n}\right)$	=	$\left({ }^{\text {n+m+1 }}{ }_{n+1}\right)$
1	+	5	+	15	+	35	+	70	=	$\left({ }_{5}{ }_{5}\right)=126$
$\left({ }^{\text {n }}\right.$)	+	$\binom{n}{2}$	+	$\left({ }^{\text {n }}\right.$)	+	$\left({ }^{\text {n }} 8\right.$)	+	\ldots	=	$2^{\text {n-1 }}$
1	+	28	+	70	+	28	+	I	=	$2^{7}=128$
$\left(\begin{array}{l}\text { n } \\ \text {) }\end{array}\right.$	+	$\binom{$ n }{3}	+	$\left({ }_{5}{ }_{5}\right.$)	+	$\left({ }^{\text {n }}\right.$)	+	\ldots	=	$2^{\text {n-1 }}$
9	+	84	+	126	+	36	+	1	=	$2^{8}=256$
$\binom{\text { n }}{0}^{2}$	+	$\left({ }^{n} 1\right)^{2}$	+	$\binom{n}{2}^{2}$	+	..	+	$\binom{n}{n}^{2}$	=	$\left({ }^{2 n}{ }_{n}\right.$)
1	+	16	+	36	+	16	+	1	=	$\left({ }_{4}^{8}\right)=70$
$\left({ }^{m} 0\right)\left({ }^{n}{ }_{p}\right)$	$+$		$+$	$\left(\mathrm{m}_{2}\right)\binom{$ n }{$\mathrm{p}-2}$	$+$	$\binom{m}{4}\left({ }_{p-4}{ }^{\text {m }}\right.$)	+	$\binom{m}{p}\binom{n}{0}$	$=$	$\left({ }^{\text {m+n }}{ }_{\mathrm{p}}\right.$)
1×15	+	7×20	$+$	21×15	$+$	35×6	+	35×1	=	$\left({ }^{7+6} 4\right)=715$
(I) ${ }^{\text {n }}{ }_{1}$)	+	(2) (${ }^{\mathbf{n}} \mathbf{2}$)	+	(3) ($\left.{ }^{n} 3\right)$	+	\ldots	+	$(\mathrm{n})\binom{$ n }{n}	=	$n 2^{\text {n-1 }}$
1×5	+	2×10	+	3×10	+	4×5	+	5×1	=	$5 \times 2^{4}=80$
$(1)\binom{$ n }{1}	-	(2) (${ }^{\mathbf{n}} \mathbf{2}$)	+		+	\ldots	$(\mathrm{I})^{n+1}$	(n) ${ }^{\mathrm{n}} \mathrm{n}$)	=	0
1×5	-	2×10	+	3×10	-	4×5	+	5×1	$=$	0

Notes

To appreciate fully the interpretation of these properties trace them out on Pascal's Triangle

Notes

Pascal's Triangle as developed by Isaac Newton

$\mathrm{n}=$	-5	1	-5	15	-35	70	-126	210	-330	495	-715
$\mathrm{n}=$	-4	1	-4	10	-20	35	-56	84	-120	165	-220
$\mathrm{n}=$	-3	1	-3	6	-10	15	-21	28	-36	45	-55
$\mathrm{n}=$	-2	I	-2	3	-4	5	-6	7	-8	9	-10
$\mathrm{n}=$	-1	1	-1	1	-1	1	-1	1	-1	1	-1
	0	I	0	0	0	0	0	0	0	0	0
$\mathrm{n}=$	1/2	I	$1 / 2$	-1/8	1/16	-5/128	${ }^{7} / 25$	21/10			${ }^{115} 6558$
$\mathrm{n}=$	1	I	1	0	0	0	0	0	0	0	0
$\mathrm{n}=$	2	1	2	1	0	0	0	0	0	0	0
$\mathrm{n}=$	3	1	3	3	I	0	0	0	0	0	0
$\mathrm{n}=$	4	1	4	6	4	1	0	0	0	0	0
$\mathrm{n}=$	5	1	5	10	10	5	1	0	0	0	0
$\mathrm{n}=$	6	1	6	15	20	15	6	1	0	0	0
$\mathrm{n}=$	7	1	7	21	35	35	21	7	1	0	0
$\mathrm{n}=$	8	1	8	28	56	70	56	28	8	1	0
$\mathrm{n}=$	9	1	9	36	84	126	126	84	36	9	1
$\mathrm{n}=$	10	1	10	45	120	210	252	210	120	45	10
$\mathrm{n}=$	11	1	11	55	165	330	462	462	330	165	55
$\mathrm{n}=$	12	1	12	66	220	495	792	924	792	495	220
$\mathrm{n}=$	13	1	13	78	286	715	1287	1716	1716	1287	715
$\mathrm{n}=$	14	1	14	91	364	1001	2002	3003	3432	3003	2002
	15	1	15	105	455	1365	3003	5005	6435	6435	5005

Notes

Newton extended Pascal's triangle into negative values.
He also interpolated between integers to derive terms for fractional values of n.
We can derive terms from the binomial expansion $I+n x+{ }^{n(n-1) x^{2}} / 2!{ }^{n(n-1)(n-2) x^{3}} / 3!\cdots$

Definition of Moments of a Distribution

Sample variate X has a distribution $\mathrm{P}(\mathrm{x})$, known population mean μ and variance σ^{2}

	Population	Sample	Unbiased estimate
mean	μ	$x^{\sim}={ }^{\Sigma f x} / \Sigma \mathrm{f}$	x
variance	$\sigma^{2}=\left\langle(X-\mu)^{2}\right\rangle$	$\mathrm{s}_{\mathrm{n}}{ }^{2}$	$S_{n-1}{ }^{2}$
discrete	$\sum\left(x_{i}\right)\left(x_{i}-\mu\right)^{2}$	$1 / n \sum\left(x_{i}-x^{\sim}\right)^{2}$	

continuous $\int P(x)(x-\mu)^{2} d x$
standard deviation $\quad \sigma={ }^{+} \sqrt{ } \sigma^{2} \quad s_{n}={ }^{+} \sqrt{s_{n}}{ }^{2} \quad s_{n-1}={ }^{+} \sqrt{s_{n-1}}{ }^{2}$

Correlation

$$
\begin{aligned}
r & =S_{x y} /\left(S_{x x} S_{y y}\right) \quad \text { pearson product moment corr. coeff. } \\
\text { where } S_{x y} & =\sum\left(x_{i}-x^{\sim}\right)\left(y_{i}-y^{\sim}\right) \\
\text { where } S_{x x} & =\sum\left(x_{i}-x^{\sim}\right)^{2} \\
& =\sum\left(x_{i}^{2}\right)-{ }^{\left(\sum x i\right)^{2}} I_{n} \\
\text { where } S_{y y} & =\sum\left(y_{i}-y^{\sim}\right)^{2} \\
& =\sum\left(y_{i}^{2}\right)-{ }^{\left(\sum y i\right)^{2}} I_{n}
\end{aligned}
$$

Regression

$$
\begin{array}{ll}
y=a x+b & \text { regression line } y \text { on } x \\
a=S_{x y} / S_{x x} & \\
b=y \tilde{y}-a x &
\end{array}
$$

Notes

This is the closest I can get to writing x bar
This is the $\kappa_{\mathbf{2}}$ statistic given by $\kappa_{\mathbf{2}}=\mathbf{n} / \mathbf{n - 1} \mathbf{S}_{\mathbf{n}}{ }^{2}$

Determination (r^{2}) and Correlation (r)

Notes

† These values shouldn't be taken too literally.
Note that correlation does not imply causation
The coefficient of determination r^{2} is a measure of the strength of association between two variables, X and Y.

For linear regression, it is the proportion explained by the conjectured model.
The correlation coefficient r is a measure of the degree of linearity between two variables In the case of perfect linear correlation we have $r^{2}=r^{2}$
r^{2}, the coefficient of determination, is a thing all in its own right
r^{2} is r, the correlation coefficient, squared.
Students often get confused between the two expressions - no idea why.
Greek Alphabet

Principle/Simplest Use English Type

alpha	A	not used	α	first root of quadratic	a	a
beta	B	Beta function	β	second root of quadratic	b	b
gamma	Γ	Gamma function	γ	Euler's constant	g	g
delta	Δ	Difference operator	δ	small increment	d	d
epsilon	E	not used	ε	error	short e	e
zeta	Z	not used	ζ	Riemann zeta function	z	z
eta	H	not used	η	efficiency	long e	h
theta	Θ	asymp. tight bound	θ	angle	th	q
iota	I	not used	1	imaginary unit	i	i
kappa	K	not used	κ	curvature	k	k
lambda	Λ	diag. matrix eigen-values	λ	failure rate	1	1
mu	M	not used	μ	population mean	m	m
nu	N	not used	v	poisson ratio	n	n
xi	Ξ	grand canonical ensemble	ξ	damping coefficient	x	x
omicron	O	limiting behaviour function	o	generally not used	short 0	0
pi	П	Product operator	π	ratio ${ }^{c} /{ }_{d}$ circle	P	P
rho	P	not used	ρ	correlation coefficient	r	r
sigma	Σ	summation	σ	standard deviation	s	s
tau	T	not used	τ	mean lifetime	t	t
upsilon	Y	Bessel function	v	generally not used	u	u
phi	Φ	cumulative function	ϕ	golden ratio	ph	f
phi (alt.)	ϑ	not used	φ	normal function	ph	j
chi	X	probability function	χ^{2}	chi-squared prob.function	ch	c
psi	Ψ	not used	ψ	wave function	ps	y
omega	Ω	mathematical constant	ω	angular frequency	long o	w

Counting

No.	Greek	Latin
I	mono	uni
2	duo	bi
3	tri	tri
4	tetra	quad
5	penta	quin
6	hexa	sex
7	hepta	sept
8	octo	oct
9	nona	non
10	deca	dec

These booklets are written and produced by Robert Goodhand
Although the formulae and expressions given have been individually derived and checked errors do creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com

