Mr. G's little booklet on

Miscellaneous
 Aspects of
 Mathematics

Issue 5.0

12/16

Mr. G's Little Booklets are
I Symbols and Definitions
2 Circular Functions
3 Hyperbolic Functions
4 Complex Numbers
5 Calculus
6 Series
7 Venn Diagrams
8 Logic and Propositional Calculus
9 Vectors and Matrices
10 Probability
II Laplace and Fourier Transforms
12 Miscellaneous Aspects of Mathematics
13 Statistical Tables
14 Trigonometric and Logarithmic Tables
I5 Investigations - General
16 Investigations - Number

Indices

$$
\begin{aligned}
a^{m} \cdot a^{n} & =a^{m+n} \\
a^{\wedge} m / a^{\wedge} n & =a^{m-n} \\
a^{-m} & ={ }^{1} / a^{\wedge} m \\
a^{1 / m} & =m \sqrt{ } \\
a^{n / m} & =m \sqrt{ } a^{n} \\
\left(a^{m}\right)^{n} & =a^{m n}
\end{aligned}
$$

Roots

$$
\begin{aligned}
& \sqrt{ }(a \times b)=\sqrt{ } a \times \sqrt{ } b \quad a \in P^{+}, b \in P^{+} \text {ie real and positive } \\
& \sqrt{ }\left({ }^{\mathbf{a}} I_{\mathbf{b}}\right)=\sqrt{\mathbf{a}} /{ }^{\mathrm{b}} \\
& { }^{\mathbf{a}} /{ }_{\sqrt{b}}=\mathbf{a} \sqrt{b} /{ }_{b} \\
& { }^{1} /(a+\sqrt{b})=(a-\sqrt{b}) /\left(a^{2}-b\right)
\end{aligned}
$$

Restrictions

$$
(a b)^{c}=a^{c} b^{c} \quad a \in P^{+}, b \in P^{+}, c \in P
$$

otherwise we get $\left.\left.\right|^{1 / 2}=\left({ }^{-}\left|x^{-}\right|\right)^{1 / 2} \neq()^{-}\right)^{1 / 2} \cdot\left(^{-} \mid\right)^{1 / 2}=-\mid$

Continued Fractions

$(a+\sqrt{ } b)$ is termed a quadratic irrational if a and b are fractions and b not a perfect square Continued fraction representation follow the pattern $A, B, C \ldots C, B, 2 A, B, C, \ldots C, B, 2 A, B, C$ etc.

$$
\begin{aligned}
\mathrm{eg} \sqrt{ } 14 & =\langle 3 ; I, 2, I, 6, I, 2, I, 6, I, 2, I, 6, \ldots\rangle \text { (TI-83 accurate to } 20 \text { terms) } \\
\text { by way of interest } \pi & =\langle 3 ; 7,15, I, 2,9,2, I, I, I, 2, I, 3, I, \ldots\rangle \text { (TI-83 accurate to } 13 \text { terms) }
\end{aligned}
$$

Notes

Mensuration

$$
\begin{aligned}
& \text { circumference of circle }=2 \pi r \quad r=\text { radius of circle } \\
& \text { length arc of a circle }=r \theta \\
& \text { length chord of a circle }=2 r \sin 1 / 2 \theta \\
& \text { circumference of an ellipse } \sim \pi(\mathrm{a}+\mathrm{b}) \\
& \text { first approximation } \\
& \sim \pi[3(a+b)-\sqrt{ }[(a+3 b)(3 a+b)] \\
& \text { area circle }=\pi r^{2} \\
& \text { area sector }=1 / 2 r^{2} \theta \\
& \text { area sector }=1 / 2 \int r^{2} d \theta \\
& \text { area of segment }=1 / 2 r^{2}(\theta-\sin \theta) \quad \theta \text { measured in radians } \\
& \text { area ellipse }=\pi \mathrm{ab} \\
& \text { surface area slice of a sphere }=2 \pi r h \\
& \text { surface area sphere }=4 \pi r^{2} \\
& \text { surface area spherical cap }=2 \pi \mathrm{rk} \\
& \text { by setting } r=\left(a^{2}+k^{2}\right) / 2 k \\
& \text { surface area spherical cap }=\pi\left(\mathrm{a}^{2}+\mathrm{k}^{2}\right) \\
& \text { total surface area cone }=\pi r(r+\text { slant height }) \\
& \text { total surface area of a cylinder }=2 \pi r(h+r) \text { which is rather neat } \\
& \text { volume sphere }=4 / 3 \pi r^{3} \quad r=\text { radius of sphere } \\
& \text { volume sphere cap }=1 / 6 \pi h\left(3 a^{2}+h^{2}\right) \quad a=\text { radius of base } \\
& =1 / 3 \pi \mathrm{k}^{2}(3 \mathrm{r}-\mathrm{k}) \quad \mathrm{k}=\text { height of cap } \\
& \text { volume ellipsoid }=4 / 3 \pi \mathrm{abc} \\
& \text { volume cylinder }=\pi r^{2} h \\
& \text { volume pyramid }=1 / 3 \text { (area base) } \times \text { height } \\
& \text { volume cone }=1 / 3 \pi r^{2} h \\
& \text { volume rectangular base frustrum }=1 / 3\{[A+B+\sqrt{ }(A \times B)] \times h]\} \\
& A \text { and } B \text { are areas of top and bottom faces } \\
& \text { volume square base frustrum }=1 / 3 h\left(a^{2}+a b+b^{2}\right) \\
& \text { volume circular cone frustrum }=1 / 3 \pi h\left(R^{2}+R r+r^{2}\right)
\end{aligned}
$$

Volumes of the Euclid's 5 Regular Polyhedrons side I

Shape	Volume		Value	Surface Area Value
tetrahedron	$\sqrt{2} / 12$	≈ 0.118	$\sqrt{3}$	≈ 1.732
cube (hexahedron)	1			
octahedron	$\sqrt{2} / 3$	≈ 0.471	$2 \sqrt{3}$	≈ 3.464
dodecahedron	$1 / 4(15+7 \sqrt{ } 5)$	≈ 7.663	$\sqrt{(225+90 \sqrt{ } 5)}$	≈ 20.646
icosahedron	$5(3+\sqrt{5}) / 12$	≈ 2.182	$5 \sqrt{3}$	≈ 8.660

Triangle Trigonometry Rules where $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$
cosine rule

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

sine rule $\quad{ }^{\mathrm{a}} I_{\sin \mathrm{A}}={ }^{\mathrm{b}} I_{\sin \mathrm{B}}{ }^{\mathrm{c}} I_{\sin \mathrm{C}}=2 \mathrm{R}$ (circumcircle)
tangent rule

$$
\begin{array}{rlr}
\mathrm{a}-\mathrm{b} / \mathrm{a}+\mathrm{b} & =\tan 1 / 2(\mathrm{~A}-\mathrm{B}) / \tan 1 / 2(\mathrm{~A} \downarrow \mathrm{~B}) & \tan 1 / 2(\mathrm{~A}+\mathrm{B})=\cot 1 / 2 \mathrm{C} \\
\sin 1 / 2 \mathrm{~A} & =\sqrt{ }\{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c}) / \mathrm{bc}\} & \mathrm{bc} \text { any two sides } \\
\cos 1 / 2 \mathrm{~A} & =\sqrt{\{(\mathbf{s}(\mathrm{s}-\mathrm{a}) / \mathrm{bc}\}} & \\
\tan 1 / 2 \mathrm{~A} & =\sqrt{\{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c}) / \mathrm{s}(\mathbf{s}-\mathrm{a})\}} &
\end{array}
$$

$4 \cos 1 / 2 A \cos 1 / 2 B \cos 1 / 2 C=\sin A+\sin B+\sin C$
$4 \sin 1 / 2 A \sin 1 / 2 B \sin 1 / 2 C=\cos A+\cos B+\cos C-1$
$\tan A \tan B \tan C=\tan A+\tan B+\tan C$
$\cot 1 / 2 A \cot 1 / 2 B \cot 1 / 2 C=\cot 1 / 2 A+\cot 1 / 2 B+\cot 1 / 2 C$

$$
\text { I }=\tan ^{1} / 2 \mathrm{~A} \tan 1 / 2 \mathrm{~B}+\tan 1 / 2 \mathrm{~B} \tan 1 / 2 \mathrm{C}+\tan 1 / 2 \mathrm{C} \tan 1 / 2 \mathrm{~A}
$$

Means

start with the power mean $=\mathrm{p} \sqrt{ }\left({ }^{1} /{ }_{\mathbf{n}} \mathrm{i=1} \Sigma^{\mathbf{n}} \mathrm{a}_{\mathbf{i}} \mathbf{p}\right) \quad$ aka generalised mean
set $p=-1$ we get harmonic mean $=\left(1 / n_{i=1} \Sigma^{n}\left(a_{i}\right)^{-1}\right)^{-1}$
set $p=0$ \& we get geometric mean $={ }^{n} \sqrt{ }\left(\mathbf{i}=1 \Pi^{n} a_{i}\right)$
set $p=1$ \& we get arithmetic mean $=1 / \mathbf{n i n}_{\mathrm{i}=1} \Sigma^{\mathbf{n}} \mathrm{a}_{\mathbf{i}}$
set $p=2$ \& we get quadratic mean $=2 \sqrt{ }\left(1 /{ }_{n i=1} \Sigma^{n} \mathrm{a}_{\mathbf{i}}{ }^{2}\right) \quad$ aka root mean square
heronian mean $=1 / 3[a+\sqrt{ }(\mathrm{ab})+\mathrm{b}] \quad=2 / 3 \mathrm{a} \cdot \mathrm{m} \cdot+1 / 3$ g.m.
arithmetric-geometric and geometric-harmonic means are calculated by an iterative process

Partial Fractions

Where $f(x)$ is a lesser degree than the denominator.
Type I $\quad f(x) /_{(x+a) \cdot(x-b) \cdot(x+c)}=A /(x+a)+B /(x-b)+C /(x+c)$
example

$$
\begin{aligned}
4 x^{2}+2 x-14 /_{x^{3}+3 x^{2}-x-3} & =3 /(x+1)-1 /(x-1)+2 /(x+3) \\
f(x) /_{(x+a)^{3}} & =A /(x+a)+B /(x+a)^{2}+C /(x+a)^{3}
\end{aligned}
$$

Type 2
A quick way to do this is to set $\mathrm{x}+\mathrm{a}=\mathrm{z}$ and then rearrange $\mathrm{f}(\mathrm{x})$
example

$$
4 x+1 /(x+1)^{3}=4 /(x+1)^{2}-3 /(x+1)^{3}
$$

Type $3 \mathrm{f}(\mathrm{x}) /\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right) \cdot(\mathrm{cx}+\mathrm{d})=\mathrm{Ax}+\mathrm{B} /\left(\mathrm{ax}^{2} \mathrm{bx}+\mathrm{c}\right)+\mathrm{C} /(\mathrm{cx}+\mathrm{d})$
where the expression $a x^{2}+b x+c$ does not factorise.
example $\quad-x^{-3} /\left(x^{2}+1\right) \cdot(x+1)=x-1 /\left(x^{2}+1\right)-2 /(x+1)$
Type $4 \mathrm{f}(\mathrm{x}) /_{\left(\mathrm{ax}^{2}+\mathrm{b}\right)^{2} \cdot(\mathrm{cx}+\mathrm{d})}=\mathbf{A x + B} /\left(\mathrm{ax}^{2}+\mathrm{b}\right)^{2}+\mathbf{C x}+\mathrm{D} /(\mathrm{ax+b})+\mathrm{E} /(\mathrm{cx}+\mathrm{d})$
example

$$
3 x-1 /\left(2 x^{2}-1\right)^{2} \cdot(x+1)=8 x-5 /\left(2 x^{2}-1\right)^{2}+8(x-1) /\left(2 x^{2}-1\right)-4 /(x+1)
$$

If $f(x)$ is of the same degree as $g(x)$ then carry out a straight division first.
Type 5
Examples are

$$
\begin{aligned}
{ }^{f(\mathrm{x})} /_{\mathrm{g}(\mathrm{x})} & =1+{ }^{\mathbf{A}} / \mathbf{g (x)} \\
\mathrm{x} / \mathbf{x + 1} & =1-{ }^{1} / \mathbf{x + 1} \\
\mathbf{x} / \mathbf{x + a} & =1-{ }^{\mathbf{a}} / \mathbf{x + a}
\end{aligned}
$$

Type 6 This principle can be extended to expressions such as $A x+B+{ }^{C} / f(x)+{ }^{D} / g(x)$

Remainder Theorem

$f(x) \equiv g(x) \times$ divisor + remainder \quad where the divisor is a linear factor
so $f(x) \equiv g(x) \times(x-a)+R \quad n b$ the identy sign \equiv
Put $x=a$ and we get $f(a)=R$
If a polynomial $f(x)$ is divided by $(x-a)$ then the remainder is $=f(a)$
If a polynomial $f(\mathrm{x})$ is divided by $(\mathrm{bx}-\mathrm{a})$ then the remainder is $=f(\mathrm{a} / \mathrm{b})$

Factor Theorem

If $f(x)$ is a polynomial and $f(a)=0$ then $(x-a)$ is a factor
If $f(\mathrm{x})$ is a polynomial and $f(\mathrm{a} / \mathrm{b})=0$ then $(\mathrm{bx}-\mathrm{a})$ is a factor

Quadratics General Solution with roots α and β

$$
\begin{array}{rlr}
y & =a x^{2}+b x+c & \\
a s x^{2}+b x & =(x+1 / 2 b)^{2}-(1 / 2 b)^{2} & \text { it is a short step to show } \\
x & =-b \pm \sqrt{\left(b^{2}-4 a c\right) / 2 a} & \\
\Delta & =b^{2}-4 a c & \text { termed the discriminant } \\
\alpha+\beta & =-b / a & \\
\alpha \beta & =c / a & \\
1 / 2(\alpha+\beta) & =-b / 2 a &
\end{array}
$$

so line of symmetery is $x=-b / 2 a$
which is the midpoint of the two roots
$f(x+a)$ is a translation of ${ }^{-} a$ in the x-direction
$\mathrm{f}(\mathrm{x})+\mathrm{a}$ is a translation of ${ }^{+} \mathrm{a}$ in the y -direction
$\mathrm{f}(\mathrm{ax})$ is a stretch of $1 / \mathrm{a}$ in the x-direction (divide x-coord. by a)
a $f(x)$ is a stretch of a in the y-direction (multiply y-coord. by a)

Complex Solutions of the Quadratic

for $a x^{2}+b x+c$ the roots are $p+i q$ and $p-i q$ where

$$
\begin{aligned}
& \mathrm{P}=-\mathrm{b} / 2 \mathrm{a} \\
& \mathrm{q}=\sqrt{ }\left(4 \mathrm{ac}-\mathrm{b}^{2}\right) / 2 \mathrm{a}
\end{aligned}
$$

These solutions hold for all quadratic equation with real coefficients.
Hence if $\mathrm{a}+\mathrm{bi}$ is a root of $\mathrm{f}(\mathrm{x})$ then $\mathrm{a}-\mathrm{bi}$ is also a root and both may be real or complex.

Particular Solution of a Related Quadratic
if $(x+a)^{1 / 2}+(x-a)^{1 / 2}-(x-b)^{1 / 2}=0$ then

$$
x=b \pm 2 \sqrt{\left(b^{2}+3 a^{2}\right)} / 3 \quad \text { the challenge is finding integer sol }{ }^{n} .
$$

Notes on the Complex Conjugate

The conjugate offering a second solution to a quadratic is a specific example of the general. i is qualitatively indistinct from its additive and multiplicative inverse ${ }^{-}{ }^{i}\left[\mathrm{eg} \mathrm{i}^{2}=\left({ }^{-} \mathrm{i}\right)^{2}\right]$ So for many natural settings if a complex number provides a solution so will its conjugate.

Notes

There are infinitely many logarithms of a positive number but only one of them is real (Euler) ${ }^{\dagger}$ This is the theorem which we will later use to raise complex numbers to complex powers.

Coordinate Geometry - Linear Equations

$$
\begin{aligned}
y & =m x+c \\
a x+b y+c & =0 \\
m & =\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) \\
y-y_{1} & =m\left(x-x_{1}\right) \\
\left(y-y_{1}\right) /\left(y_{2}-y_{1}\right) & =\left(x-x_{1}\right) /\left(x_{2}-x_{1}\right) \\
\text { if } m_{1} m_{2} & =-1 \text { then lines are perpendicular }
\end{aligned}
$$

midpoint line $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\left\{1 / 2\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right), 1 / 2\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)\right\}$ distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\sqrt{ }\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right\}
$$

equation of perpendicular bisector of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left(x_{1}-x_{2}\right) x+\left(y_{1}-y_{2}\right) y=1 / 2\left\{\left(x_{1}{ }^{2}-x_{2}{ }^{2}\right)+\left(y_{1}{ }^{2}-y_{2}{ }^{2}\right)\right\}
$$

Equation circle centre (h, k) and radius r is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Perpendicular distance from (h, k) to $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$

$$
=\quad|a h+b k+c| / \sqrt{ }\left(a^{2}+b^{2}\right)
$$

Acute angle ϕ between lines with gradients m_{1} and m_{2}

$$
=\tan ^{-1}\left(m_{1}-m_{2}\right) /\left(1+m_{1} m_{2}\right)
$$

If $\mathrm{m}_{1} \mathrm{~m}_{2}={ }^{-}$I then the above gives $\tan ^{-1}=\infty$ and hence $\phi=90^{\circ}$ ie lines perpendicular
Coordinate Geometry - Circle
$(x-h)^{2}+(y-k)^{2}=r^{2}$ for circle centre (h, k) and radius r

Notes

as $\tan \theta-\tan \phi / \mathbf{I}+\tan \theta \tan \phi=\tan (\theta-\phi)$ then you might deduce that

$$
\tan ^{-1}\left({ }^{\theta-\phi} / 1+\theta \phi\right)=\tan ^{-1} \theta-\tan ^{-1} \phi \text { which looks logically correct. }
$$

but as \tan isn't a one-to-one function the RHS can be out by $\pm \pi$
Try putting $m_{1}=I$ and $m_{2}=^{-} 2$ and you'll get ${ }^{-} 72^{\circ}$ (correct) and 108° (sort of incorrect)

Area of a Triangle

Sides are a b and c , angles are AB and C .
Further s is semiperimeter R is radius circumcircle and r is the radius of the inscribed circle.

$$
\begin{aligned}
& A_{\Delta}=1 / 2 a b \sin C \\
& A_{\Delta}=1 / 2\left\{a^{2} \sin B \sin C /{ }_{\sin (B+C)}\right\} \quad \dagger \\
& A_{\Delta}=\sqrt{ }[s(s-a)(s-b)(s-c)] \quad \text { Heron's formula } \\
& A_{\Delta}=1 / 2 \text { abs det. }\left\{I,{ }^{-} I, I ; x_{1}, x_{2}, x_{3} ; y_{1}, y_{2}, y_{3}\right\} \\
& =1 / 2\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& \text { the excel function is MDETERM } \\
& \mathrm{A}_{\Delta}=\mathrm{s} \times \mathrm{r} \quad \text { which is pretty neat! } \ddagger \\
& \mathrm{A}_{\Delta}=1 / \mathrm{A}^{\mathrm{abc}} / \mathbf{R} \quad \ddagger
\end{aligned}
$$

Area of Quadrilaterals (using term "s" for semi-perimeters)

$$
\text { area }=\sqrt{ }\left[(s-a)(s-b)(s-c)(s-d)-a b c d \times \cos ^{2} 1 / 2(A+C)\right]^{+}
$$

This is Bretschneider's formula for any quadrilateral. For a cyclic quadrilateral this reduces to

$$
\text { area }=\sqrt{ }[(s-a)(s-b)(s-c)(s-d)]
$$

This is Brahmagupta's formula for any cyclic quadrilateral. For a triangle this reduces to

$$
\text { area }=\sqrt{ }[s(s-a)(s-b)(s-c)] \quad \text { see above }
$$

Notes

Equating these two gives us the (obvious) relationship $\sin A=\sin (B+C)$
Equating these two gives us the relationship $\mathrm{Rr}=1 / 2^{\mathrm{abc}} /(\mathrm{a}+\mathrm{b}+\mathrm{c})$
+A and C are opposite angles.
Bretschneider's formula is due to Coolidge who derived it from a related relationship

Modelling using Sin and Cos Functions

As our variable is usually t let's use $\mathrm{H}(\mathrm{t})$ for the function rather than $\mathrm{y}=$ strictly $\mathrm{H}(\mathrm{t})=\mathrm{A} \sin (\omega \mathrm{t}+\phi)+\mathrm{k}$

$$
\begin{aligned}
\text { where } A & =\text { amplitude } \\
\text { and } \omega & =\text { angular frequency }{ }^{360^{\circ}} / \mathbf{T}
\end{aligned}
$$

T is the period, the time for one complete cycle

$$
\text { and } \phi=\text { phase }
$$

positive values ϕ shift the curve back
negative values of ϕ shift the curve forward
At IB Studies level all curves encountered can be modelled by positive/negative sine / cosine . sine curves start at 0 , cosine curves start at max. Watch out for negatives (inversion of curve)

$$
\text { and } \mathrm{k}=\text { axis (centre line) } 1 / 2(\max \text { value }+\min \text { value })
$$

Procedure

Look at the data given.
Find the maximum value , the minimum value and the period.
Calculate the amplitude A, the frequency ω and the axis value \mathbf{k}.
By inspection identify if function is ${ }^{+}{ }^{\sin }{ }^{-} \sin ^{+}{ }^{+} \cos$ or ${ }^{-} \cos$
Write down the equation and enter it into your calculator.
Use trace function to find any particular value of $\mathbf{H (t)}$ or $\mathbf{t}\{$ ie on your calculator \mathbf{y} or $\mathbf{x}\}$.
You need to set the WINDOWS y values to roughly to $\pm 2 \mathrm{~A}$ and x values roughly to $\pm 2 T$ Alternatively use the Table option on your calculator

Notes

cosine is sine shifted back 90° so $\cos x=\sin (x+90)$
In higher maths we often work in radians where $2 \pi^{c}=360^{\circ}$ ($^{\text {c }}$ means radians, often omitted)

Linear Interpolations

For function $f(x)$ find two values that sandwich a root α

$$
\begin{array}{lll}
\mathrm{a}=f(\mathrm{a}) & & \text {-ve value } \\
\mathrm{b} & =f(\mathrm{~b}) & { }^{+} \text {ve value }
\end{array}
$$

then first approximation α is a_{0} where

$$
\mathrm{a}_{0}=f(\mathbf{b}) \mathrm{a}-f(\mathrm{a}) \mathrm{b} / f(\mathrm{~b})-f(\mathbf{a})
$$

(actually adding)

Trapezium Rule

$$
\begin{aligned}
{ }_{\mathrm{a}} \int^{\mathrm{b}} \mathrm{ydx} & =1 / 2 \mathrm{~h}\left[y_{0}+2\left(y_{1}+y_{2} \ldots+y_{\mathrm{n}-1}\right)+y_{\mathrm{n}}\right] \\
\text { where } \mathrm{h} & =\mathrm{b}-\mathrm{a} / \mathrm{n} \\
\text { and } y_{i} & =f(\mathrm{a}+\mathrm{ih})
\end{aligned}
$$

Newton-Raphson Iteration
$f(x)=0: x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$

Approximations where x is small

$$
\begin{aligned}
\sin x & \approx x \\
\cos x & \approx 1-1 / 2 x^{2} \\
\tan x & \approx x \quad \text { so for small } x \text { we have } \sin x \approx \tan x \\
(1+x)^{1 / 2} & \approx 1+1 / 2 x-1 / 8 x^{2} \quad \text { for } x \rightarrow d x 2 \text { terms suffice } \\
\ln (1+x) & \approx 1-1 / 2 x^{2} \\
e^{x} & \approx 1+x+1 / 2 x^{2}
\end{aligned}
$$

Numerical Solution of Differential Equations

$$
\begin{aligned}
\left({ }^{d y} / d x\right)_{0} & \approx y_{1}-y_{0} / h \\
\left({ }^{d y} / d x\right)_{0} & \approx y_{I}-y_{-1} / 2 h \\
\left({ }^{d^{2} y} / /_{d x^{2}}\right)_{0} & \approx y_{I}-2 y_{0}+y_{-1} / 2 h
\end{aligned}
$$

Sequences and Sums - find the next sequence and sum
5) Square Numbers Pattern

$$
\begin{aligned}
3^{2}+4^{2} & =5^{2} \\
10^{2}+11^{2}+12^{2}= & 13^{2}+14^{2} \\
21^{2}+22^{2}+23^{2}+24^{2}= & 25^{2}+26^{2}+27^{2} \\
36^{2}+37^{2}+38^{2}+39^{2}+40^{2} & =41^{2}+42^{2}+43^{2}+44^{2}
\end{aligned}
$$

What comes next?
6) Triangular and Square Numbers

$$
\begin{array}{ll}
0+1=1^{2} & S_{1}=1 \\
1+3=2^{2} & S_{2}=4 \\
3+6=3^{2} & S_{3}=9 \\
6+10=4^{2} & S_{4}=16
\end{array}
$$

What comes next?
7) Triangular Numbers Pattern

$$
\begin{aligned}
1+3+6 & =10 \\
15+21+28+36 & =45+55 \\
66+78+91+105+120 & =136+153+171
\end{aligned}
$$

What comes next?
8) Cubes and Triangular Numbers

$$
\begin{align*}
1^{3} & =1^{2} \tag{1}\\
1^{3}+2^{3} & =3^{2} \tag{2}\\
1^{3}+2^{3}+3^{3} & =6^{2} \tag{3}\\
1^{3}+2^{3}+3^{3}+4^{3} & =10^{2} \tag{4}
\end{align*}
$$

What comes next?

Domain and Range

Domain is \mathbf{R}

Codomain is \mathbf{R}
Function inj sur T $\mathbf{x} \in$

Image $\mathbf{y} \in$
$\sin x \quad$ odd $\quad x_{1} \quad x_{5} \quad 2 \pi \quad\left({ }^{-} \infty,{ }^{+} \infty\right)$ $\sin ^{-1} x \quad$ odd $\checkmark_{2} \quad x_{3} \quad x \quad\left[{ }^{-},{ }^{+}\right.$। $]$ $\operatorname{cosec} x$ odd $x_{1} \quad x_{5} \quad 2 \pi \quad\left(-\infty,{ }^{+} \infty\right)$ $\operatorname{cosec}^{-1} x$ odd $\checkmark_{2} x_{3} x_{4} \times\left({ }^{-} \infty,-I\right] \cup\left[I,{ }^{+} \infty\right)$ $\cos x \quad$ even $x_{1} x_{2} x_{2} x_{5} 2 \pi \quad\left({ }^{-} \infty,{ }^{+} \infty\right)$ $\cos ^{-1} x \quad x \quad \checkmark_{2} \quad x_{3} \quad x \quad\left[\begin{array}{lll}-1, ।]\end{array}\right.$ $\sec x \quad$ even $x_{1} x_{2} x_{2} x_{5} 2 \pi \quad\left({ }^{-} \infty,{ }^{+} \infty\right)$ $\sec ^{-1} \times \quad x \quad \checkmark_{2} \quad x_{3} \quad x \quad\left({ }^{-} \infty,-1\right] \cup[1,+\infty)$ $\tan x \quad$ odd $x_{1} \quad \boldsymbol{v}_{1} \quad 2 \pi$ $\cot x \quad$ odd $x_{1} \quad \checkmark_{1} \quad 2 \pi \quad\left({ }^{-} \infty,{ }^{+} \infty\right)$ $\tan ^{-1} x$ odd $\checkmark_{2} \quad x_{3} \quad x \quad\left({ }^{-} \infty,{ }^{+} \infty\right)$ $\cot ^{-1} x \quad ? \quad \checkmark_{2} \quad x_{3} \times\left({ }^{-} \infty, 0\right) \cup\left(0,{ }^{+} \infty\right){ }^{\# 3}$ $\sinh x$ odd $\checkmark_{3} \checkmark_{1} x$ $\sinh ^{-1} x$ odd $\checkmark_{3} \checkmark_{1} x$ $\operatorname{cosech} x$ odd $\checkmark_{3} \quad x_{4} \quad x$ $\operatorname{cosech}^{-1} x$ odd $\checkmark_{3} \quad x_{4} \quad x$
$\left(-\infty,{ }^{+} \infty\right) \quad \# 2$
$\left({ }^{-} \infty,+\infty\right)$
$\left({ }^{-} \infty,{ }^{+} \infty\right)$
$\left({ }^{-} \infty, 0\right) \cup\left(0,{ }^{+} \infty\right)^{\# 3}$
$\# 1\left({ }^{-},-,-1\right] \cup\left[1,{ }^{+} \infty\right)$
$\left({ }^{-} \pi, 0\right) \cup(0, \pi)$
[${ }^{\circ},{ }^{-}$I]
[$0, \pi$]
$\left({ }^{-},{ }^{-}\right.$I $] \cup\left[1,{ }^{+} \infty\right)$
$0,1 / 2 \pi) \cup(1 / 2 \pi, \pi]$
$\left({ }^{-} \infty,+\infty\right)$
$\left({ }^{-} \infty,{ }^{+} \infty\right)$
$(-1 / 2 \pi, 1 / 2 \pi)$ $(0, \pi)$
$\left({ }^{-} \infty,{ }^{+} \infty\right)$
$\left({ }^{-} \infty,{ }^{+} \infty\right)$
$\left({ }^{-} \infty, 0\right) \cup\left(0,{ }^{+} \infty\right)$
$\left.\left({ }^{-} \infty, 0\right) \cup\left(0,{ }^{+} \infty\right)\right)^{\# 3}\left({ }^{-} \infty, 0\right) \cup\left(0,{ }^{+} \infty\right)$
$\left({ }^{-} \infty,+\infty\right)$
$\left[1,{ }^{+} \infty\right)$
$\operatorname{sech} x$ even $x_{2} \quad x_{2} \quad x$ $\operatorname{sech}^{-1} x \quad x \quad \checkmark_{4} \quad x_{3} \quad x$
$(-\infty,+\infty)$
$\left(0,{ }^{+} \mathrm{I}\right]$
$\tanh x \quad$ odd $\checkmark_{3} \quad x_{6} \quad x \quad\left(-\infty,{ }^{+} \infty\right)$ $\tanh ^{-1} x$ odd $\checkmark_{3} \checkmark_{1} \times \quad\left({ }^{-},{ }^{+} ।\right)$
coth x odd $\checkmark_{3} \times \times\left({ }^{-} \infty, 0\right) \cup\left(0,{ }^{+} \infty\right){ }^{\# 3}\left({ }^{-} \infty,-1\right) \cup\left(1,{ }^{+} \infty\right)$ $\operatorname{coth}^{-1} x$ odd $\checkmark_{3} \quad x_{4} \times\left({ }^{-} \infty,-1\right) \cup\left(1,{ }^{+} \infty\right) \quad\left({ }^{-} \infty, 0\right) \cup\left(0,{ }^{+} \infty\right)$
$[1,+\infty)$
$\left[0,{ }^{+} \infty\right)$
$\left(0,{ }^{+}\right.$]]
$\left[0,{ }^{+} \infty\right)$
(${ }^{-},{ }^{+}$I)
$\left({ }^{-} \infty,{ }^{+} \infty\right)$
$\cosh x$ even $x_{2} \quad x_{2} \quad x$ $\cosh ^{-1} x \quad x \quad v_{4} \quad x_{3} \quad x$

Sequences and Sums - find the next sequence and sum

13) Cubes and Differences Triangular Numbers

$$
\begin{array}{ll}
2^{3}=3^{2}-1^{2} & \left(T_{2}-T_{1}\right) \\
3^{3}=6^{2}-3^{2} & \left(T_{3}-T_{2}\right) \\
4^{3}=10^{2}-6^{2} & \left(T_{4}-T_{3}\right) \\
5^{3}=15^{2}-10^{2} & \left(T_{5}-T_{4}\right)
\end{array}
$$

What comes next?
14) Sum Cubes and Product Squares

$$
\begin{aligned}
1^{3} & =1 / 4 \times 1^{2} \times 2^{2} \\
1^{3}+2^{3} & =1 / 4 \times 2^{2} \times 3^{2} \\
1^{3}+2^{3}+3^{3} & =1 / 4 \times 3^{2} \times 4^{2} \\
1^{3}+2^{3}+3^{3}+4^{3} & =1 / 4 \times 4^{2} \times 5^{2}
\end{aligned}
$$

What comes next?

15) Centred Triangular Numbers

| $3 \times 1+1=4$ | $T_{c 2}$ |
| :--- | :--- | :--- |
| $3 \times 3+1=10$ | $T_{c 3}$ |
| $3 \times 6+1=19$ | $T_{c 4}$ |
| $3 \times 10+1=31$ | $\mathrm{~T}_{c 5}$ |

What comes next?
16) Perfect Numbers (sum factors $=\mathbf{2 n}$)

$$
\begin{array}{r}
1+2+3=6 \\
1+2+3+4+5+6+7=28
\end{array}
$$

Double last number sequence and add I. If prime then sequence sum is perfect number.
$7 \times 2+1=15$. Not prime. $15 \times 2+1=31$. Prime.
$1+2+3+4+5+\ldots+31=496$
$31 \times 2+1=63$. Not prime. $63 \times 2+1=127$. Prime.
$1+2+3+4+5+\ldots+127=8128$ What comes next? (This is tricky)

Conics	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\mathrm{x}^{2} / \mathrm{a}^{2}+{ }^{y^{2}} / \mathrm{b}^{2}=$	$y^{2}=4 a x$	$\mathrm{x}^{2} / \mathrm{a}^{2}-y^{2} /_{\mathrm{b}^{2}}=1$	$x y=c^{2}$
Parametric Form	$(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)$	(at $\left.{ }^{2}, 2 a t\right)$	(asec $\theta, b \tan \theta)$ (\pm acosh $\theta, \mathrm{bsinh} \theta)$	$\left(\mathrm{ct},{ }^{\mathrm{c} / \mathrm{t}}\right.$)
Eccentricity	$\begin{aligned} & \mathrm{e}<\mathrm{I} \\ & \mathrm{~b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right) \end{aligned}$	$e=1$	$\begin{aligned} & e>1 \\ & b^{2}=a^{2}\left(e^{2}-1\right) \end{aligned}$	$e=\sqrt{2}$
Foci	($\pm \mathrm{ae}, 0$)	$(\mathrm{a}, 0)$	($\pm \mathrm{ae}, 0$)	$(\pm \sqrt{ } 2 \mathrm{c}, \pm \sqrt{ } \mathrm{c}$ c $)$
Directrices	$x= \pm{ }^{\text {a }}$ e	$x=-\mathrm{a}$	$x= \pm{ }^{\text {a }} / \mathrm{e}$	$x+y= \pm \sqrt{2 c}$
Asymptotes	none	none	${ }^{x} / \mathrm{a}= \pm^{\mathrm{y}} / \mathrm{b}$	$x=0, y=0$

Curvature

$$
\rho=\kappa={ }^{\mathrm{ds}} / \mathrm{d} \psi
$$

Arc Length

$$
\begin{aligned}
& \mathrm{s}={ }_{\mathrm{xA}} \int^{\mathrm{xB}} \sqrt{\left[\mathrm{I}+\left({ }^{\mathrm{dy}} /{ }_{\mathrm{dx}}\right)^{2}\right] \mathrm{dx} \quad \text { cartesian coord. }} \\
& \text { OR s }={ }_{y A}{ }^{y B} \sqrt{ }\left[1+\left({ }^{\mathrm{dx}} /{ }_{\mathrm{dy}}\right)^{2}\right] d y \quad \text { cartesian coord. } \\
& \text { OR } s={ }_{t A} \int^{\mathrm{tB}} \sqrt{ }\left[\left({ }^{\mathrm{dx}} / \mathrm{dt}\right)^{2}+\left({ }^{\mathrm{dy}} / \mathrm{dt}\right)^{2}\right] \mathrm{dt} \\
& s=\int \sqrt{ }\left\{r^{2}+\left({ }^{\mathrm{dr}} / \mathrm{d} \theta\right)^{2}\right\} d \theta \\
& \text { polar coord. }
\end{aligned}
$$

Surface Area of Revolution

$$
\begin{aligned}
& s_{x}={ }_{x A} \int^{x B} 2 \pi y \sqrt{ }\left[I+\left({ }^{d y} / d x\right)^{2}\right] d x \\
& S_{y}={ }_{y A} \int^{y B} 2 \pi x \sqrt{ }\left[1+\left({ }^{\mathrm{dx}} / \mathrm{dy}\right)^{2}\right] d x \\
& ={ }_{\mathrm{tA}} \int^{\mathrm{tB}} 2 \pi y \sqrt{ }\left[\left({ }^{\mathrm{dx}} / \mathrm{dt}\right)^{2}+\left({ }^{\mathrm{dy}} / \mathrm{dt}\right)^{2}\right] \mathrm{dt}
\end{aligned}
$$

cartesian coord.
cartesian coord.
parametric form

Notes

Theory of Equations

If we have $\left(x+a_{1}\right)\left(x+a_{2}\right)\left(x+a_{3}\right)\left(x+a_{4}\right) \ldots\left(x+a_{n}\right)$ the expansion is
$x^{n}+\left(a_{1}+a_{2}+a_{3}+a_{4} \ldots a_{n}\right) x^{n-1}$
$+\left(a_{1} a_{2}+a_{1} a_{3}+\ldots a_{1} a_{n}+a_{2} a_{3}+a_{2} a_{4} \ldots a_{2} a_{n}+\ldots a_{n-1} a_{n}\right) x^{n-2}$
$+\left(a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+\ldots a_{1} a_{2} a_{n}+a_{1} a_{3} a_{4}+a_{1} a_{3} a_{5}+\ldots a_{1} a_{3} a_{n}+\ldots a_{n-1} a_{n-1} a_{n}\right) x^{n-3}$
$+\left(a_{1} a_{2} a_{3} a_{4}+\ldots a_{n-2} a_{n-1} a_{n}\right)$
so if the original coefficients are real then both sum and product all roots must be real. so (I have read but don't quite see why) there must be at least one pair of roots such that

$$
\begin{aligned}
& (a+i b)+(c+i d)=p+0 i \\
& (a+i b) \cdot(c+i d)=q+0 i
\end{aligned}
$$

it is then easy to show that $a=c$ and $b={ }^{-} d$
so all the roots can be put into conjugate pairs.
This is a sufficient condition but not a complete proof that it is a necessary condition. If there is an odd number of roots the remaining root must be real.

Graphically algebraic functions of odd order must cross the x-axis somewhere.
If I multiply out $(x+a+i b)(x+a-i b)(x+c+i d)(x+c-i d)$ I get all real coeff.
$x^{4}+[2 a+2 c] x^{3}+\left[a^{2}+b^{2}+c^{2}+d^{2}+4 a c\right] x^{2}+\left[(2 c)\left(a^{2}+b^{2}\right)+(2 a)\left(c^{2}+d^{2}\right)\right] x+\left[a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}\right]$ so if I then hypothesise solutions $(I+2 i)(I-2 i)(3+4 i)(3-4 i)$ to a quartic equation substituting these values for x into equ. $x^{4}+8 x^{3}+42 x^{2}+80 x+125$ gives 0 each time. So now I think I understand why solutions to equations must come in conjugate pairs.

Notes

i is qualitatively indistinct from its additive and multiplicative inverse ${ }^{-} \mathrm{i}\left[\mathrm{eg} \mathrm{i}^{2}=\left({ }^{-} \mathrm{i}\right)^{2}\right]$ So for many natural settings if a complex number provides a solution so will its conjugate. This also explains the restriction when splitting surds. Numbers must be real and positive because the mathematics cannot distinguish between ${ }^{-} i$ and ${ }^{+} i$

Orders of Magnitude

septillionth	yocto-	y	10^{-24}	septillion	yotta-	Y	10^{24}
sextillionth	zepto-	z	10^{-21}	sextillion	zetta-	Z	10^{21}
quintillionth	atto-	a	10^{-18}	quintillion	exa-	E	10^{18}
quadrillionth	femto-	f	10^{-15}	quadrillion	peta-	P	10^{15}
trillionth	pico-	P	10^{-12}	trillion	tera-	T	10^{12}
billionth	nano-	n	10^{-9}	billion	giga-	G	10^{9}
millionth	micro-	$\mathrm{\mu}$	10^{-6}	million	mega-	M	10^{6}
thousandth	milli-	m	10^{-3}	thousand	kilo-	k	10^{3}
hundredth	centi-	c	10^{-2}	hundred	hecto-	h	10^{2}
tenth	deci-	d	10^{-1}	ten	deca-	da	10^{1}
one	-	-	10^{0}	one	-	-	10^{0}

Prime Numbers (in columns of 25)
$2 \begin{array}{lllllllllllll}2 & 101 & 233 & 383 & 547 & 701 & 877 & 1049 & 1229 & 1429 & 1597 & 1783\end{array}$ $\begin{array}{llllllllllll}3 & 103 & 239 & 389 & 557 & 709 & 881 & 1051 & 1231 & 1433 & 1601 & 1787\end{array}$ $\begin{array}{llllllllllll}5 & 107 & 241 & 397 & 563 & 719 & 883 & 1061 & 1237 & 1439 & 1607 & 1789\end{array}$ $7 \quad 109 \quad 251 \quad 401 \quad 569 \quad 727 \quad 88710631249144716091801$

 $\begin{array}{lll}17 & 131 & 269\end{array}$ $19 \quad 137 \quad 27$ $23 \quad 139 \quad 27$ $29 \quad 149 \quad 281$ $31 \quad 151 \quad 28$ $\begin{array}{lll}37 & 157 & 293\end{array}$ $41 \quad 163 \quad 307$ $43 \quad 167$ 311 461 $\begin{array}{llll}47 & 173 & 313 & 463\end{array}$

 $61 \quad 191 \quad 337487 \quad 647823$ 99| |I7| |361 |543 |72| 1913
 $71197 \quad 349499659829$ 1013 ||87 |373 |553 |733 |933 $73199 \quad 353 \quad 503 \quad 661 \quad 839101911931381 \mid 55917411949$ 79 21। 359509673853 102| I20| 1399 |567 |747 195| $83 \quad 223 \quad 367$ 521 $677 \quad 857103112131409157117531973$

Notes

Prime Number Theorem states that the number of primes up to $n, \pi_{n} \sim n / \ln (\mathbf{n})$ Alternatively the $\mathrm{n}^{\text {th }}$ prime number $\mathrm{P}_{\mathrm{n}} \sim \mathrm{n} \ln (\mathrm{n})$. So $\mathrm{P}_{300} \sim 300 \ln 300=1711$ (cf 1999) If $\mathrm{li}=\int \mathrm{dt} / \mathrm{Int}$ then $\mathrm{Li}(\mathrm{x})={ }_{2} \int^{\mathrm{xdt}} / \mathrm{Int}=\mathrm{li}(\mathrm{x})-\mathrm{li}(2)$ is a better approximation to $\pi(\mathrm{x})$ Goodhand's conjecture states the percent proportion of primes approximately equals the percent that ${ }^{n} I_{\ln (n)}$ underestimates $p(n)$. Hence $\pi(n)$ better $\approx 1 / 2\left(I-\sqrt{ }\left\{I-{ }^{4} I_{\ln (n)}\right\}\right.$

Counting

No.	Greek	Latin
I	mono	uni
2	duo	bi
3	tri	tri
4	tetra	quad
5	penta	quin
6	hexa	sex
7	hepta	sept
8	octo	oct
9	nona	non
10	deca	dec

These booklets are written and produced by Robert Goodhand
Although the formulae and expressions given have been individually derived and checked errors do creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com

