Mr. G's little booklet on

Miscellaneous Aspects of Mathematics

Issue 5.0

12/16

∕∕ rg

Mr. G's Little Booklets are

- I Symbols and Definitions
- 2 Circular Functions
- **3** Hyperbolic Functions
- 4 Complex Numbers
- 5 Calculus
- 6 Series
- 7 Venn Diagrams
- 8 Logic and Propositional Calculus
- 9 Vectors and Matrices
- **10** Probability
- **II Laplace and Fourier Transforms**
- **12 Miscellaneous Aspects of Mathematics**
- **13 Statistical Tables**
- **14 Trigonometric and Logarithmic Tables**
- 15 Investigations General
- **16** Investigations Number

∞ rg

Indices

a ^m • a ⁿ	=	a ^{m+n}
a^m/ _{a^n}	=	a ^{m – n}
a ^{-m}	=	l/ _{a^m}
a ^{I/m}	=	^m √a
a ^{n/m}	=	m√an
(a ^m) ⁿ	=	a ^{mn}

Roots

$\sqrt{(a \times b)}$	=	√a ×√b	$a \in P^+$, $b \in P^+$ ie real and positive
$\sqrt{(a / b)}$	=	$^{\sqrt{a}}$ / $_{\sqrt{b}}$	
$^{\mathbf{a}}$ / $_{\sqrt{\mathbf{b}}}$	=	^{a√b} / _b	
/ _(a +√b)	=	$(a - \sqrt{b}) / (a^2 - b)$)

Restrictions

$$(ab)^{c} = a^{c}b^{c}$$
 $a \in P^{+}, b \in P^{+}, c \in P$
otherwise we get $|'^{2} = (|x|)^{2} \neq (|)^{2} \cdot (|)^{2} = |$

Continued Fractions

(a $+\sqrt{b}$) is termed a quadratic irrational if a and b are fractions and b not a perfect square Continued fraction representation follow the pattern A,B,C...C,B,2A,B,C,...C,B,2A,B,C etc.

eg $\sqrt{14}$ = $\langle 3; 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, ... \rangle$ (TI-83 accurate to 20 terms) by way of interest π = $\langle 3; 7, 15, 1, 2, 9, 2, 1, 1, 1, 2, 1, 3, 1, ... \rangle$ (TI-83 accurate to 13 terms)

Notes

Mensuration			
circumference of circle	=	2πr	r = radius of circle
length arc of a circle	=	rθ	
length chord of a circle	=	2r sin ½θ	
circumference of an ellipse	~	π(a + b)	first approximation
	~	π[3(a+b) − √[(a+3b)(3a+b)]
area circle	=	πr²	
area sector	=	¹ ∕₂ r²θ	
area sector	=	'∕₂∫r² dθ	
area of segment	=	$\frac{1}{2} r^2 (\theta - \sin \theta)$	$\boldsymbol{\theta}$ measured in radians
area ellipse	=	πab	
surface area slice of a sphere	=	2π rh	where h is spacing
surface area sphere	=	4πr²	setting h = 2r
surface area spherical cap	=	$2\pi rk$	setting h = k
by setting r	=	$(a^2 + k^2)/2k$	a = radius base cap
surface area spherical cap	=	$\pi(a^2 + k^2)$	
total surface area cone	=	π r (r + slant height)	
total surface area of a cylinder	=	2πr (h + r)	which is rather neat
volume sphere	=	⁴ / ₃ πr ³	r = radius of sphere
volume sphere cap	=	^I / ₆ πh(3a² + h²)	a = radius of base
	=	^I / ₃ πk²(3r − k)	k = height of cap
volume ellipsoid	=	$^{4}/_{3}$ π abc	
volume cylinder	=	πr² h	
volume pyramid	=	^I / ₃ (area base) × height	
volume cone	=	$'_{3} \pi r^{2} h$	
volume rectangular base frustrum	=	$/_{3} \{ [A + B + \sqrt{A \times A}]$	B)] × h] }
		A and B are areas of top	and bottom faces
volume square base frustrum	=	$\frac{1}{_{3}}$ h (a ² + ab + b ²)	
volume circular cone frustrum	=	$'_{3} \pi h (R^{2} + Rr + r^{2})$	

Volumes of the Euclid's 5 Regular Polyhedrons side I								
Shape	Volume		Value	Surface A	rea	Value		
tetrahedron	^{√2} / ₁₂	\approx	0.118	√3	\approx	1.732		
cube (hexahedron)	I			6				
octahedron	^{\2} / ₃	\approx	0.471	2√3	\approx	3.464		
dodecahedron	¼(5+7√5)	\approx	7.663	√(225+90√5)	\approx	20.646		
icosahedron	^{5(3+√5)} / ₁₂	\approx	2.182	5√3	\approx	8.660		
Triangle Trig	onometry R	ule	s	where A +	B +	C = 180°		
cosine rule	a²	=	b² + c²	– 2bc <mark>co</mark>	s A			
sine rule	^a / _{sin A}	=	^b / _{sin B}	^c / _{sin C}	=	2R (circumcircle)		
tangent rule	a - b/a + b	=	tan ½(A−	$(\mathbf{B})_{1}$	B)	$\tan \frac{1}{2}(A+B) = \cot \frac{1}{2}C$		
	sin ½A	=	√{ (s − b)	(s-c)/bc	_,	bc any two sides		
	cos ½A	=	√{s (s - a	$^{(a)}/_{bc}$				
	tan ½A	=	√{(s − b)	$(s - c)/_{s(s - a)}$.)}			
4 cos 1/2 A cos	s ½B cos ½C	=	sin A +	sin B + si	n C			
4 sin ½ A sin	½ B sin ½ C	=	cos A +	- cos B +	cos	C – I		
tan /	A tan B tan C	=	tan A +	tan B + t	an (C		
cot ½A cot	t ½B cot ½C	=	cot ½A	+ cot ½	B +	cot ½C		
	I	=	tan½A ta	an½B+tan½	B ta	n½C+tan½C tan½A		
Means								
			n LL	n_n				

	start with the	þower mean	=	$^{\mathbf{p}}\sqrt{('/_{\mathbf{n}\ \mathbf{i}=\mathbf{l}}\Sigma^{\mathbf{n}}a_{\mathbf{i}}^{\mathbf{p}})}$	aka generalised mean					
se	t p =−1 we get	harmonic mean	=	$({}^{I}/_{n i=I} \Sigma^{n}(a_{i})^{-I})^{-I}$						
se	t þ =0 & we get	geometric mean	=	ⁿ √(_{i=1} ∏ ⁿ a _i)	(this is correct)					
se	t p = I & we get	arithmetic mean	=	$ ' _{n i=1} \Sigma^{n} a_{i}$						
se	t þ =2 & we get	quadratic mean	=	$\sqrt[2]{(1/n_{i=1}\Sigma^{n}a_{i}^{2})}$	aka root mean square					
		heronian mean	=	^I / ₃ [a + √(ab) + b]	$= \frac{2}{3}$ a.m. $+\frac{1}{3}$ g.m.					
ar	arithmetric-geometric and geometric-harmonic means are calculated by an iterative process									

Partial Fractions

Where f(x) is a lesser degree than the denominator.

 $\frac{f(x)}{(x+a).(x-b).(x+c)} = \frac{A}{(x+a)} + \frac{B}{(x-b)} + \frac{C}{(x+c)}$ $\frac{4x^2 + 2x - 14}{x^3 + 3x^2 - x - 3} = \frac{3}{(x+1)} - \frac{1}{(x-1)} + \frac{2}{(x+3)}$ Type I example $\frac{f(x)}{(x+a)^3} = \frac{A}{(x+a)} + \frac{B}{(x+a)^2} + \frac{C}{(x+a)^3}$ Type 2 A quick way to do this is to set x + a = z and then rearrange f(x) $\frac{4x+1}{(x+1)^3} = \frac{4}{(x+1)^2} - \frac{3}{(x+1)^3}$ example Type 3 $f(x)/(ax^2+bx+c) \cdot (cx+d) = \frac{Ax+B}{(ax^2bx+c)} + \frac{C}{(cx+d)}$ where the expression $ax^2 + bx + c$ does not factorise. $(x^{2}+1) \cdot (x^{2}+1) = (x^{2}-1)/(x^{2}+1) - (x^{2}+1)$ example Type 4 $\frac{f(x)}{(ax^2 + b)^2 \cdot (cx + d)} = \frac{Ax + B}{(ax^2 + b)^2} + \frac{Cx + D}{(ax + b)} + \frac{E}{(cx + d)}$ le $\frac{3x - 1}{(2x^2 - 1)^2 \cdot (x + 1)} = \frac{8x - 5}{(2x^2 - 1)^2} + \frac{8(x - 1)}{(2x^2 - 1)} - \frac{4}{(x + 1)}$ example If f(x) is of the same degree as g(x) then carry out a straight division first. $\frac{f(x)}{g(x)} = |+A| / \frac{g(x)}{g(x)}$ then proceed as above Type 5 $x/_{x+1} = 1 - 1/_{x+1}$ Examples are $x'_{x+a} = |-a'|_{x+a}$ Type 6 This principle can be extended to expressions such as $Ax + B + C/_{f(x)} + D/_{g(x)}$

Remainder Theorem

 $f(x) \equiv g(X) \times \text{divisor} + \text{remainder} \quad \text{where the divisor is a linear factor}$ so $f(x) \equiv g(X) \times (x - a) + R$ nb the identy sign \equiv Put x = a and we get f(a) = RIf a polynomial f(x) is divided by (x - a) then the remainder is f(a)If a polynomial f(x) is divided by (bx - a) then the remainder is f(a)

Factor Theorem

- If f(x) is a polynomial and f(a) = 0 then (x a) is a factor
- If f(x) is a polynomial and f(a/b) = 0 then (bx a) is a factor

Quadratics General Solution with roots α and β $ax^{2} + bx + c$ = У as x² + bx = $(x + \frac{1}{2}b)^2 - (\frac{1}{2}b)^2$ it is a short step to show - b ± √(b² - 4ac)/_{2a} = Х = b² - 4ac termed the discriminant Λ ^{-b}/_a $\alpha + \beta$ = $^{\rm c}/_{\rm a}$ αβ = ^{-b}/_{2a} $\frac{1}{2}(\alpha + \beta) =$ so line of symmetery is $\mathbf{x} = \frac{-\mathbf{b}}{22}$ which is the midpoint of the two roots f(x + a) is a translation of \bar{a} in the x-direction f(x) + a is a translation of a in the y-direction f (ax) is a stretch of $\frac{1}{a}$ in the x-direction (divide x-coord. by a) a f (x) is a stretch of a in the y-direction (multiply y-coord. by a)

Complex Solutions of the Quadratic

for $ax^2 + bx + c$ the roots are p + iq and p - iq where

$$p = \frac{-b}{2a} = \frac{\sqrt{4ac - b^2}}{2a} = \frac{\sqrt{4ac - b^2}}{2a}$$

These solutions hold for <u>all</u> quadratic equation with real coefficients.

Hence if a + bi is a root of f(x) then a - bi is also a root and both may be real or complex.

Particular Solution of a Related Quadratic if $(x + a)^{\frac{1}{2}} + (x - a)^{\frac{1}{2}} - (x - b)^{\frac{1}{2}} = 0$ then $x = \frac{b \pm 2\sqrt{b^2 + 3a^2}}{3}$ the challenge is finding integer solⁿ.

Notes on the Complex Conjugate

The conjugate offering a second solution to a quadratic is a specific example of the general.

i is qualitatively indistinct from its additive and multiplicative inverse $\bar{i} [eg i^2 = (\bar{i})^2]$

So for many natural settings if a complex number provides a solution so will its conjugate.

Logarithms	lf	а	=	b ⁿ		
then we defin	e for any given base b	log _b a	=	n		
and we defin	e the antilog such that	b ⁿ	=	antilog _b n		
and so as lo	ng as we are in base b	b ^{log a}	=	а		
	and usefully	log <mark>b</mark> b	=	I (also In e = I)		
I) Product Rule		log _b xy	=	log _b x + log _b y		
2) Quotient Rule		log <mark>b</mark> (^x /y)	=	log _b x – log _b y		
3) Power Rule		log _b a ^k	=	k log _b a		
	Setting k = ⁻ I gives	$\log_{b}(1/a)$	=	[–] log _b a		
so nov	v we can find the logs of	fractions but no	ot ne	gatives in real domain		
	as before let	b ⁿ	=	а		
take logs both side	es to a different base c	log _c b ⁿ	=	log _c a		
	<i>a</i> s n = log _b a	log _b a log _c b	=	log _c a		
5) Log Product Rule	by rearranging	log _c b log _b a	=	log _c a		
	and this pattern co	an be extended	to ar	y number of products		
6) Base Change Rule	by rearranging again	log _b a	=	log _c a / log _c b		
	so now we can find	the log to any b	ase	by setting $c = 10$ or e .		
7) Power Base Rule	which follows on	log <mark>b</mark> ªC	=	^I / _a log _b c		
8) Power Base/Inverse Rule	Setting $a = -I$ gives	log <mark>1/b</mark> 1/c	=	log _b c		
9) Proportionality Rule	2	log _b a		k log _c a		
	if w	re set c = a and	rem	ember that log _a a = 1		
10) Reciprocal Rule		log _b a	=	(log _a b) ⁻¹		
II) Combination Rule	from Rule 3) and 1)	log _b a + k	=	log _b (a × b ^k)		
12) Exponential Rule						
and recollect as lo	ng as we are in base b	а	=	b ^{log a}		
	so setting b = e gives	а	=	e ^{In a}		
givi	ng the key relationship	a^{x}	=	e ^{x In a} †		

Notes

There are infinitely many logarithms of a positive number but only one of them is real (Euler) [†] This is the theorem which we will later use to raise complex numbers to complex powers.

Coordinate Geometry - Linear Equations y = mx + cax + by + c = 0 $m = (y_2 - y_1) / (x_2 - x_1)$ $y - y_1 = m(x - x_1)$ $(y - y_1) / (y_2 - y_1) = (x - x_1) / (x_2 - x_1)$ if $m_1m_2 = -I$ then lines are perpendicular midpoint line (x_1, y_1) to (x_2, y_2) is $\{\frac{1}{2}(x_1+x_2), \frac{1}{2}(y_1+y_2)\}$ distance between (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ equation of perpendicular bisector of (x_1, y_1) and (x_2, y_2) is $(x_1 - x_2)x + (y_1 - y_2)y = \frac{1}{2}\{(x_1^2 - x_2^2) + (y_1^2 - y_2^2)\}$ Equation circle centre (h,k) and radius r is $(x-h)^2 + (y-k)^2 = r^2$ Perpendicular distance from (h,k) to ax + by + c = 0 $|ah + bk + c| / \sqrt{a^2 + b^2}$ Acute angle ϕ between lines with gradients m_1 and m_2 $= \tan^{-1} (m_1 - m_2) / (1 + m_1 m_2)$ If $m_1m_2 = -1$ then the above gives $\tan^{-1} = \infty$ and hence $\phi = 90^\circ$ ie lines perpendicular

Coordinate Geometry - Circle

 $(x - h)^2 + (y - k)^2 = r^2$ for circle centre (h,k) and radius r

Notes

as $\tan \theta - \tan \phi / |_{1 + \tan \theta \tan \phi} = \tan (\theta - \phi)$ then you might deduce that $\tan^{-1}(\theta - \phi / |_{1 + \theta \phi}) = \tan^{-1} \theta - \tan^{-1} \phi$ which looks logically correct. but as $\tan i \sin' t a$ one-to-one function the RHS can be out by $\pm \pi$ Try putting m₁=1 and m₂=⁻2 and you'll get ⁻72° (correct) and 108° (sort of incorrect)

Area of a Triangle

Sides are a b and c, angles are A B and C.

Further s is semiperimeter R is radius circumcircle and r is the radius of the inscribed circle.

$$\begin{array}{rcl} \mathsf{A}_{\Delta} &=& \texttt{I}_{2} \texttt{ a } \texttt{b } \texttt{sin } \mathsf{C} & \texttt{f} \\ \mathsf{A}_{\Delta} &=& \texttt{I}_{2} \texttt{ \{ } \texttt{a}^{\texttt{2} } \overset{\texttt{sinB} \texttt{sinC}}{\texttt{sin(B+C)} \texttt{\}} } & \texttt{f} \\ \mathsf{A}_{\Delta} &=& \texttt{V}_{\texttt{I}} \texttt{ s } (\texttt{s}-\texttt{a})(\texttt{s}-\texttt{b})(\texttt{s}-\texttt{c}) \texttt{]} & \texttt{Heron's formula} \\ \mathsf{A}_{\Delta} &=& \texttt{I}_{2} & \texttt{abs } \texttt{det.} \texttt{ \{ I, -I, I; \texttt{x}_{1}, \texttt{x}_{2}, \texttt{x}_{3}; \texttt{y}_{1}, \texttt{y}_{2}, \texttt{y}_{3} \} \\ &=& \texttt{I}_{2} & \texttt{[x}_{1}(\texttt{y}_{2}-\texttt{y}_{3}) + \texttt{x}_{2}(\texttt{y}_{3}-\texttt{y}_{1}) + \texttt{x}_{3}(\texttt{y}_{1}-\texttt{y}_{2}) \texttt{|} \\ & \texttt{the excel function is MDETERM} \\ \mathsf{A}_{\Delta} &=& \texttt{s} \times \texttt{r} & \texttt{which is pretty neat } ! & \texttt{f} \\ \mathsf{A}_{\Delta} &=& \texttt{I}_{4} & \texttt{abc}/_{\mathsf{R}} & \texttt{f} \end{array}$$

Area of Quadrilaterals (using term "s" for semi-perimeters)

area = $\sqrt{[(s-a)(s-b)(s-c)(s-d) - abcd \times cos^2 \frac{1}{2}(A + C)]}$

This is Bretschneider's formula for any quadrilateral. For a cyclic quadrilateral this reduces to

area =
$$\sqrt{[(s - a)(s - b)(s - c)(s - d)]}$$

This is Brahmagupta's formula for any cyclic quadrilateral. For a triangle this reduces to

area =
$$\sqrt{[s(s-a)(s-b)(s-c)]}$$
 see above

Notes

[†] Equating these two gives us the (obvious) relationship sin A = sin (B + C)

[‡] Equating these two gives us the relationship R r = $\frac{1}{2}^{abc}/_{(a+b+c)}$

[←]A and C are opposite angles.

Bretschneider's formula is due to Coolidge who derived it from a related relationship

Modelling using Sin and Cos Functions As our variable is usually t let's use H(t) for the function rather than y =A sin ($\omega t + \phi$) + k strictly H(t) = where A amplitude = $\frac{1}{2}$ (max value – min value) ^{360°} / _T angular frequency and ω = T is the <u>period</u>, the time for one complete cycle phase positive values ϕ shift the curve back and ϕ = negative values of ϕ shift the curve forward At IB Studies level all curves encountered can be modelled by positive/negative sine / cosine. sine curves start at 0, cosine curves start at max. Watch out for negatives (inversion of curve) axis (centre line) ¹/₂ (max value + min value) and **k** =

Procedure

Look at the data given.

Find the maximum value , the minimum value and the period.

Calculate the amplitude **A**, the frequency ω and the axis value **k**.

By inspection identify if function is ***sin sin cos** or **cos**

Write down the equation and enter it into your calculator.

Use trace function to find any particular value of H(t) or t {ie on your calculator y or x}.

You need to set the WINDOWS y values to roughly to $\pm 2A$ and x values roughly to $\pm 2T$

Alternatively use the Table option on your calculator

Notes

cosine is sine shifted back 90° so $\cos x = \sin (x + 90)$

In higher maths we often work in radians where $2\pi^{c} = 360^{\circ}$ (^c means radians, often omitted)

Linear Interpolations

For function f(x) find two values that sandwich a root α

$$a = f(a)$$
-ve value $b = f(b)$ +ve value

then first approximation α is a_0 where

a

=

f(b)a - f(a) b / f(b) - f(a)

(actually adding)

Trapezium Rule

Newton-Raphson Iteration $f(x) = 0 : x_{n+1} = x_n - f(x_n) / f'(x_n)$

Approximations where x is small

$$\begin{array}{rcl} \sin x &\approx & x \\ \cos x &\approx & | - \frac{1}{2} x^2 \\ \tan x &\approx & x \\ (| + x)^{\frac{1}{2}} &\approx & | + \frac{1}{2} x - \frac{1}{8} x^2 \\ \ln (| + x) &\approx & | - \frac{1}{2} x^2 \\ e^x &\approx & | + x + \frac{1}{2} x^2 \end{array}$$
for x->dx 2 terms suffice

Numerical Solution of Differential Equations

$$({}^{dy}/{}_{dx})_{0} \approx y_{I} - y_{0} / h$$

 $({}^{dy}/{}_{dx})_{0} \approx y_{I} - y_{-1} / 2h$
 $({}^{d^{2}y}/{}_{dx^{2}})_{0} \approx y_{I} - 2y_{0} + y_{-1} / 2h$

Sequences and Sums - find the next sequence and sum

Domain	and	Rang	ge		Domain is R Codomain i				
Functior	1	inj	sur	т	X ∈	lmage y∈			
sin x	odd	×	× ₅	2π	(⁻∞,⁺∞)	[-1,+1]			
sin ⁻¹ x	odd	✓ ₂	x ₃	×	[⁻ , ⁺]	[⁻ ½π,½π]			
cosec x	odd	x	× ₅	2π	([−] ∞, ⁺ ∞) ^{#I}	(¯∞,¯I] ∪ [I, ⁺ ∞)			
cosec ⁻¹ x	odd	✓ ₂	x ₃ x ₄	×	$(\overline{\infty}, \overline{ }] \cup [, \infty)$	([−] π,0) ∪ (0,π)			
cos x	even	× ₁ × ₂	x ₂ x ₅	2π	(⁻∞,⁺∞)	[-1,-1]			
cos ⁻¹ x	×	✓ ₂	x ₃	×	[-1,-1]	[0 ,π]			
sec x	even	× ₁ × ₂	x ₂ x ₅	2π	$(-\infty, +\infty)$ #2	(¯∞,¯Ι] ∪ [Ι, ⁺ ∞)			
sec ⁻¹ x	×	✓ ₂	x ₃	×	$(\overline{\infty}, 1] \cup [1, \infty)$	0,¹⁄₂ π)∪(¹⁄₂π,π]			
tan x	odd	×	✓ _I	2π	$(-\infty, +\infty)$ #2	(⁻∞,⁺∞)			
cot x	odd	×	✓ _I	2π	([−] ∞, ⁺ ∞) ^{#I}	(⁻∞,⁺∞)			
tan ⁻¹ x	odd	✓ ₂	x ₃	×	([−] ∞, ⁺ ∞)	(⁻ 1/2π, 1/2π)			
cot ^{-l} x	?	✓ ₂	x ₃	×	($\bar{\ \infty}$,0) \cup (0, $^+\infty$) $^{\#3}$	(0 ,π) ^{#4}			
sinh x	odd	✓ ₃	✓ ₁	×	([−] ∞, ⁺ ∞)	(⁻∞,⁺∞)			
$\sinh^{-1} x$	odd	✓ ₃	✓ _I	×	([−] ∞, ⁺ ∞)	(⁻∞,⁺∞)			
cosech x	odd	✓ ₃	x ₄	×	(∞ ,0) \cup (0, $^+\infty$) $^{\#3}$	(⁻∞,0) ∪ (0,⁺∞)			
cosech ⁻¹ x	odd	✓ ₃	x ₄	×	(∞ ,0) \cup (0, $^+\infty$) $^{\#3}$	(⁻∞,0) ∪ (0,⁺∞)			
cosh x	even	x ₂	x ₂	×	(⁻∞,⁺∞)	[I, ⁺ ∞)			
cosh ⁻¹ x	×	✓ ₄	x ₃	×	[I, ⁺ ∞)	[0, ⁺ ∞)			
sech x	even	x ₂	x ₂	×	(⁻∞,⁺∞)	(0, ⁺ I]			
$\operatorname{sech}^{-1} \mathbf{x}$	×	✓ ₄	x ₃	×	(0, ⁺ I]	[0, ⁺ ∞)			
tanh x	odd	✓ ₃	x ₆	×	(⁻∞,⁺∞)	(
tanh ^{-I} x	odd	✓ ₃	✓ _I	×	(⁻ I, ⁺ I)	(⁻∞,⁺∞)			
coth x	odd	✓ ₃	×	×	($\infty,0$) \cup ($0,^+\infty$) $^{\#3}$	(¯∞,¯I) ∪ (I, ⁺ ∞)			
$\operatorname{coth}^{-1} \mathbf{x}$	odd	✓ ₃	× 4	×	$(\bar{}\infty,\bar{})\cup(,\bar{}\infty)$	(⁻∞,0) ∪ (0,⁺∞)			
^{#I} x ≠ nπ	#2 x =	≠ ¹ ⁄2π	τ + nπ		$^{\#3}(^{-\infty},0)\cup(0,^{+\infty})\equiv$	x∈R x≠ 0			
^{#4} This def	inition §	gives o	ı contin	uous	function. TI-83 will plot functio	n in 3 rd quadrant not 2 nd			

Sequences and Sums - find the next sequence and sum

13) Cubes and Differences Triangular Numbers $2^{3} = 3^{2} - 1^{2} (T_{2} - T_{1})$ $3^{3} = 6^{2} - 3^{2} (T_{3} - T_{2})$ $4^{3} = 10^{2} - 6^{2} (T_{4} - T_{3})$ $5^{3} = 15^{2} - 10^{2} (T_{5} - T_{4})$									
What comes next?									
14) Sum Cubes and Product Squares									
$ ^3 = \frac{1}{4} \times \frac{1^2}{4} \times \frac{2^2}{4}$									
$ ^{3} + 2^{3} = \frac{1}{4} \times 2^{2} \times 3^{2}$									
$ ^{3} + 2^{3} + 3^{3} = \frac{1}{4} \times 3^{2} \times 4^{2}$									
$ ^{3} + 2^{3} + 3^{3} + 4^{3} = \frac{1}{4} \times 4^{2} \times 5^{2}$									
What comes next?									
15) Centred Triangular Numbers									
$3 \times 1 + 1 = 4 T_{c2}$									
$3 \times 3 + 1 = 10$ T _{c3}									
$3 \times 6 + 1 = 19$ T _{c4}									
$3 \times 10 + 1 = 31$ T _{c5}									
What comes next?									
16) Perfect Numbers (sum factors = 2n)									
+ 2 + 3 = 6									
I + 2 + 3 + 4 + 5 + 6 + 7 = 28									
Double last number sequence and add 1. If prime then sequence sum is perfect number									
$7x2+1 = 15$. Not prime. $15 \times 2 + 1 = 31$. Prime.									
+ 2 + 3 + 4 + 5 + + 3 = 496									
31x2+1 = 63. Not prime. 63 x 2 + 1 = 127. Prime.									
I + 2 + 3 + 4 + 5 + + I27 = 8I28									
What comes next? (This is tricky)									

rg XO

Conics	Conics Ellipse I		Hyperbola	Rectangular				
Standard Form	$(x^2)_{a^2} + (y^2)_{b^2} =$	y² = 4ax	$(x^{2}/a^{2} - y^{2}/b^{2} = 1)$	$xy = c^2$				
Parametric Form	(acosθ,b <mark>sinθ</mark>)	(at², 2at)	(a <mark>secθ,btanθ)</mark> (±acoshθ,bsinhθ)	(ct, ^c / _t)				
Eccentricity	e < b² = a²(-e²)	e = 1	e > b ² = a ² (e ² -1)	e = √2				
Foci	(±ae,0)	(a,0)	(±ae,0)	(±√2c, ±√2c)				
Directrices	$x = \pm^{a}/_{e}$	x = −a	$x = \pm^{a}/_{e}$	$x + y = \pm \sqrt{2c}$				
Asymptotes	none	none	$\mathbf{x}_{a}^{\mathbf{x}} = \pm \mathbf{y}_{b}^{\mathbf{y}}$	x = 0, y=0				
Curvature ρ	$= \kappa = \frac{ds}{d\psi}$							
Arc Length s OR s OR s s	Arc Length $s = {}_{xA} \int^{xB} \sqrt{\left[1 + {\binom{dy}{dx}}^2 \right]} dx$ cartesian coord.OR $s = {}_{yA} \int^{yB} \sqrt{\left[1 + {\binom{dx}{dy}}^2 \right]} dy$ cartesian coord.OR $s = {}_{tA} \int^{tB} \sqrt{\left[{\binom{dx}{dt}}^2 + {\binom{dy}{dt}}^2 \right]} dt$ parametric form $s = \int \sqrt{\left\{ r^2 + {\binom{dr}{d\theta}}^2 \right\}} d\theta$ polar coord.							
Surface Area of Revolution $s_{x} = {}_{xA} \int^{xB} 2\pi y \sqrt{\left[1 + (\frac{dy}{dx})^{2}\right]} dx \qquad cartesian \ coord.$ $s_{y} = {}_{yA} \int^{yB} 2\pi x \sqrt{\left[1 + (\frac{dx}{dy})^{2}\right]} dx \qquad cartesian \ coord.$ $= {}_{tA} \int^{tB} 2\pi y \sqrt{\left[(\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2}\right]} dt \qquad parametric \ form$								
Notes								

Theory of Equations

If we have $(x + a_1)(x + a_2)(x + a_3)(x + a_4) \dots (x + a_n)$ the expansion is $x^{n} + (a_{1} + a_{2} + a_{3} + a_{4} \dots a_{n}) x^{n-1}$ $+(a_1a_2 + a_1a_3 + \dots + a_1a_n + a_2a_3 + a_2a_4 \dots + a_2a_n + \dots + a_{n-1}a_n)x^{n-2}$ + $(a_1 a_2 a_3 + a_1 a_2 a_4 + \dots a_1 a_2 a_n + a_1 a_3 a_4 + a_1 a_3 a_5 + \dots a_1 a_3 a_n + \dots a_{n-1} a_{n-1} a_n) x^{n-3}$ $+ (a_1 a_2 a_3 a_4 + \dots a_{n-2} a_{n-1} a_n)$ so if the original coefficients are real then both sum and product all roots must be real. so (I have read but don't quite see why) there must be at least one pair of roots such that (a + ib) + (c + id) = p + 0i $(a + ib) \cdot (c + id) = q + 0i$ it is then easy to show that a = c and b = dso all the roots can be put into conjugate pairs. This is a sufficient condition but not a complete proof that it is a necessary condition. If there is an odd number of roots the remaining root must be real. Graphically algebraic functions of odd order must cross the x-axis somewhere. If I multiply out (x + a + ib)(x + a - ib)(x + c + id)(x + c - id) I get all real coeff. $x^{4} + [2a+2c]x^{3} + [a^{2}+b^{2}+c^{2}+d^{2}+4ac]x^{2} + [(2c)(a^{2}+b^{2})+(2a)(c^{2}+d^{2})]x + [a^{2}c^{2}+a^{2}d^{2}+b^{2}c^{2}+b^{2}d^{2}]$ so if I then hypothesise solutions (1 + 2i) (1 - 2i) (3 + 4i) (3 - 4i) to a quartic equation substituting these values for x into equ. $x^4 + 8x^3 + 42x^2 + 80x + 125$ gives 0 each time. So now I think I understand why solutions to equations must come in conjugate pairs.

Notes

i is qualitatively indistinct from its additive and multiplicative inverse $\bar{}$ i [eg i² = ($\bar{}$ i)²] So for many natural settings if a complex number provides a solution so will its conjugate. This also explains the restriction when splitting surds. Numbers must be real and positive because the mathematics cannot distinguish between $\bar{}$ i and $\bar{}$ i

Orders of M	Orders of Magnitude											
septillionth	yocto-	у	10 ⁻²⁴	septillion	yotta-	Y	10 ²⁴					
sextillionth	zepto-	Z	10 ⁻²¹	sextillion	zetta-	Ζ	1021					
quintillionth	atto-	а	10 ⁻¹⁸	quintillion	exa-	Е	1018					
quadrillionth	femto-	f	10 ⁻¹⁵	quadrillion	peta-	Ρ	1015					
trillionth	pico-	Ρ	10 ⁻¹²	trillion	tera-	Т	1012					
billionth	nano-	n	۱0 ⁻⁹	billion	giga-	G	10 ⁹					
millionth	micro-	μ	۱0 ⁻⁶	million	mega-	Μ	10 ⁶					
thousandth	milli-	m	10 ⁻³	thousand	kilo-	k	10 ³					
hundredth	centi-	С	10 ⁻²	hundred	hecto-	h	10 ²					
tenth	deci-	d	10-1	ten	deca-	da	10					
one	-	-	10 ⁰	one	-	-	10 ⁰					

Mathematical	Consta	nts	- 30 decimals (last place not rounded)
pi	π	=	3.14159 26535 89793 23846 26433 83279
exponential	е	=	2.71828 18284 59045 23536 02874 71352
Pythagoras's	$\sqrt{2}$	=	1.41421 35623 73095 04880 16887 24209
	$\sqrt{3}$	=	1.73205 08075 68877 29352 74463 41505
	log 2	=	0.69314 71805 59945 30941 72321 21458
golden ratio	φ	=	1.61803 39887 49894 84820 45868 34365
Euler-Mascheroni	γ	=	0.57721 56649 01532 86060 65120 90082
Feigenbaum's	δ	=	4.66920 16091 02990 67185 32038 20466
	ξ(2)	=	1.64493 40668 48226 43647 24151 66646
Apery's	ξ(3)	=	1.20205 69031 59594 28539 97381 61511
	ξ(4)	=	1.08232 32337 11138 19151 60036 96541
Euler's	ξ(5)	=	1.03692 77551 43369 92633 13654 86457
	ξ(6)	=	1.01734 30619 84449 13971 45179 29790
	e^{π}	=	23.14069 26327 79269 00572 90863 67948

Prime	Nun	nbers	(in co	olumn	s of 2	25)					0
2	101	233	383	547	70 I	8 77	1049	1229	1429	1597	1783
3	103	239	389	557	709	88 I	1051	1231	1433	1601	1787
5	107	241	397	563	719	883	1061	1237	1439	1607	1789
7	109	251	40 I	569	727	887	1063	1249	1447	1609	1801
11	113	257	409	57 I	733	907	1069	1259	1451	1613	1811
13	127	263	419	577	739	911	1087	1277	1453	1619	1823
17	131	269	42 I	587	743	919	1091	1279	1459	1621	1831
19	137	271	43 I	593	75 I	929	1093	1283	1471	1627	1847
23	139	277	433	599	757	937	1097	1289	1481	1637	1861
29	149	281	439	601	76 I	941	1103	1291	1483	1657	1867
31	151	283	443	607	769	947	1109	1297	1487	1663	1871
37	157	293	449	613	773	953	1117	1301	1489	1667	1873
41	163	307	457	617	787	967	1123	1303	1493	1669	1877
43	167	311	46 I	619	797	97 I	1129	1307	1499	1693	1879
47	173	313	463	63 I	809	977	5	1319	1511	1697	1889
53	179	317	467	641	811	983	1153	1321	1523	1699	1901
59	181	331	479	643	82 I	991	1163	1327	1531	1709	1907
61	9	337	487	647	823	991	7	1361	1543	1721	1913
67	193	347	49 I	653	827	1009	181	1367	1549	1723	1831
71	197	349	499	659	829	1013	1187	1373	1553	1733	1933
73	199	353	503	66 I	839	1019	1193	1381	1559	1741	1949
79	211	359	509	673	853	1021	1201	1399	1567	1747	1951
83	223	367	52I	677	857	1031	1213	1409	1571	1753	1973
89	227	373	523	683	859	1033	1217	1423	1579	1759	1979
97	229	379	54 I	691	863	1039	1223	1427	1583	1777	1999

Notes

Prime Number Theorem states that the number of primes up to n, $\pi_n \sim {}^n/_{ln(n)}$ Alternatively the nth prime number $p_n \sim n \ln(n)$. So $p_{300} \sim 300 \ln 300 = 1711$ (cf 1999) If $Ii = \int {}^{dt}/_{Int}$ then $Li(x) = {}_2 \int^{x dt}/_{Int} = Ii(x) - Ii(2)$ is a better approximation to $\pi(x)$ Goodhand's conjecture states the percent proportion of primes approximately equals the percent that ${}^n/_{In(n)}$ underestimates p(n). Hence $\pi(n)$ better $\approx \frac{1}{2}(1 - \sqrt{1 - 4}/_{In(n)})$

Counting

No.	Greek	Latin
Ι	mono	uni
2	duo	bi
3	tri	tri
4	tetra	quad
5	þenta	quin
6	hexa	sex
7	hepta	sept
8	octo	oct
9	nona	non
10	deca	dec

These booklets are written and produced by Robert Goodhand

Although the formulae and expressions given have been individually derived and checked errors do

creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com

∕∕ rg