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Indices

am • an = am + n

a^m/a^n = am − n

a−m = 1/a^m

a1/m = m√a
an/m = m√an

(am)n = amn

Roots
√(a × b) = √a ×√b aR+, bR+ ie real and positive

√(a / b) = √a / √b
a / √b = a√b / b

1 / (a +√b) = (a  − √b) / (a²  −  b)

Restrictions

(ab)c = acbc aR+, bR+, cR

otherwise we get 1½ = (−1x−1)½  (−1)½ .(−1)½ = −1 

Continued Fractions
(a +√b) is termed a quadratic irrational if a and b are fractions and b not a perfect square

Continued fraction representation follow the pattern A,B,C…C,B,2A,B,C,…C,B,2A,B,C etc.

eg √14 = 3;1,2,1,6,1,2,1,6,1,2,1,6,,… (TI-83 accurate to 20 terms)

by way of interest p = 3;7,15,1,2,9,2,1,1,1,2,1,3,1,… (TI-83 accurate to 13 terms)

Notes
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Mensuration
circumference of circle = 2pr r = radius of circle

length arc of a circle = rq
length chord of a circle = 2r sin ½q

circumference of an ellipse ~ p(a + b) first approximation

~ p[ 3(a+b) − [ (a+3b)(3a+b) ]

area circle = pr²
area sector = ½ r²q
area sector = ½  r² dq

area of segment = ½ r² ( q − sin q ) q measured in radians

area ellipse = pab

surface area slice of a sphere = 2prh where  h is spacing

surface area sphere = 4pr² setting h = 2r

surface area spherical cap = 2prk setting  h = k

by setting r = (a² + k²)/2k a = radius base cap

surface area spherical cap = p(a² + k²)
total surface area cone = pr (r + slant height )

total surface area of a cylinder = 2pr (h + r) which is rather neat

volume sphere = 4/3 pr³ r = radius of sphere

volume sphere cap = 1/6 ph(3a² + h²) a = radius of base

= 1/3 pk²(3r − k) k = height of cap

volume ellipsoid = 4/3 p abc
volume cylinder = pr² h
volume pyramid = 1/3 (area base ) × height

volume cone = 1/3 pr² h
volume rectangular base frustrum = 1/3 { [ A + B + (A × B)] × h ] }

A and B are areas of top and bottom faces

volume square base frustrum = 1/3 h (a² + ab + b²)
volume circular cone frustrum = 1/3 p h (R² + Rr + r²)
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Volumes of the Euclid's 5 Regular Polyhedrons side 1
Shape Volume Value Surface Area Value

tetrahedron 2/12   0.118 3   1.732

cube (hexahedron) 1 6

octahedron 2/3   0.471 23   3.464

dodecahedron ¼(15+75)   7.663 (225+905)  20.646

icosahedron 5(3+5)/12   2.182 53   8.660

Triangle Trigonometry Rules where A + B + C = 180°

cosine rule a² = b² + c²  − 2bc cos A  
sine rule a / sin A = b / sin B

c / sin C = 2R (circumcircle)

tangent rule a − b/a + b = tan ½(A−B)/tan ½(A+B) tan½(A+B)= cot½C

sin ½A = (s − b)(s − c)/bc}  bc any two sides

cos ½A = s (s − a)/bc}
tan ½A = (s − b)(s − c)/s(s − a)}

4 cos ½A cos ½B cos ½C = sin A + sin B + sin C

4 sin ½ A sin ½ B sin ½ C = cos A + cos B + cos C − 1

tan A tan B tan C = tan A + tan B + tan C

cot ½A cot ½B cot ½C = cot ½A + cot ½B + cot ½C

1 = tan½A tan½B+tan½B tan½C+tan½C tan½A

Means
start with the power mean = p(1/n i=1S

nai
p) aka generalised mean

set p =−1 we get harmonic mean = (1/n i=1S
n(ai)

−1)−1

set p =0 & we get geometric mean = n(i=1P
nai) (this is correct)

set p =1 & we get arithmetic mean = 1/n i=1S
nai

set p =2 & we get quadratic mean = ²(1/n i=1S
nai²) aka root mean square

heronian mean = 1/3[a + (ab) + b]  = 2/3 a.m. +1/3 g.m.

arithmetric-geometric and geometric-harmonic means are calculated by an iterative process
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Partial Fractions
Where ƒ(x) is a lesser degree than the denominator.

Type 1 ƒ(x)/(x+a).(x−b).(x+c) = A/(x+a) + B/(x−b) + 
C/(x+c)

example 4x² + 2x − 14/x³+3x²−x−3 = 3/(x+1) − 1/(x−1) + 
2/(x+3)

Type 2 ƒ(x)/(x+a)³ = A/(x+a) + B/(x+a)² + 
C/(x+a)³

A quick way to do this is to set x + a = z and then rearrange f(x)

example 4x+1/(x+1)³ = 4/(x+1)² − 
3/(x+1)³

Type 3 ƒ(x)/(ax²+bx +c) • (cx+d) = Ax + B/(ax² bx + c) + C/(cx+d)

where the expression ax² + bx + c does not factorise.

example −x−3/(x²+1) • (x+1) = x − 1/(x² + 1) − 2/(x+1)

Type 4 ƒ(x)/(ax² + b)² • (cx + d) = Ax + B/(ax²+b)² + Cx + D/(ax+b) + 
E/(cx+d)

example 3x − 1/(2x² − 1)² • (x + 1) = 8x − 5/(2x² −1)² + 8(x − 1)/(2x² −1) − 
4/(x + 1)

If f(x) is of the same degree as g(x) then carry out a straight division first.

Type 5 ƒ(x)/g(x) = 1 + A / g(x)   then proceed as above

Examples are x/x+1 = 1 − 1 / x + 1
x/x+a = 1 − a / x + a

Type 6 This principle can be extended to expressions such as Ax +B + C/ƒ(x) + D/g(x)

Remainder Theorem
ƒ(x)  g(x) × divisor + remainder where the divisor is a linear factor

 so  ƒ(x)  g(x) × (x − a) + R nb the identy sign 

Put x = a and we get f(a) = R

If a polynomial ƒ(x) is divided by (x − a) then the remainder is  = ƒ (a)

If a polynomial ƒ(x) is divided by (bx − a) then the remainder is  = ƒ (a/b)

Factor Theorem
If ƒ(x) is a polynomial and ƒ (a) = 0 then (x − a ) is a factor

If ƒ(x) is a polynomial and ƒ (a/b) = 0 then ( bx − a ) is a factor
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Quadratics General Solution with roots a and b
y = ax² + bx + c

as  x² + bx = (x + ½b)² − (½ b)² it is a short step to show

x = − b ± √(b² − 4ac)/2a

D = b² − 4ac termed the discriminant

a + b = −b/a
ab = c/a

½(a + b) = −b/2a

so line of symmetery is x = −b/2a which is the midpoint of the two roots

f (x + a) is a translation of  −a in the x-direction

f (x) + a is a translation of  +a in the y-direction

f (ax) is a stretch of 1/a in the x-direction (divide x-coord. by a)

a f (x) is a stretch of a in the y-direction (multiply y-coord. by a)

Complex Solutions of the Quadratic
for ax² + bx + c the roots are p + iq and p − iq where

p = −b/2a

q = √(4ac − b²) / 2a

These solutions hold for all  quadratic equation with real coefficients.

Hence if a + bi is a root of f(x) then a − bi is also a root and both may be real or complex.

Particular Solution of a Related Quadratic

if  (x + a)½ + (x − a)½ − (x − b)½ = 0 then

x = b ± 2√(b² + 3a²)/3 the challenge is finding integer sol n .

Notes on the Complex Conjugate
The conjugate offering a second solution to a quadratic is a specific example of the general.

i is qualitatively indistinct from its additive and multiplicative inverse − i [eg i² = ( − i)²]

So for many natural settings if a complex number provides a solution so will its conjugate.
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Logarithms If a = bn

then we define for any given base b logba = n
and we define the antilog such that bn = antilogb n
and so as long as we are in base b blog a = a

and usefully logbb = 1 (also  ln e = 1)
1) Product Rule logbxy = logbx + logby
2) Quotient Rule logb(

x/y) = logbx − logby
3) Power Rule logba

k = k logba
 Setting k = −1 gives logb(

1/a) = −logba
so now we can find the logs of fractions but not negatives in real domain

as before let bn = a
take logs both sides to a different base c logcb

n = logca
as n = logba logba logcb = logca

5) Log Product Rule by rearranging logcb logba = logca
and this pattern can be extended to any number of products

6) Base Change Rule  by rearranging again logba = logca / logcb
so now we can find the log to any base by setting c =10 or e.

7) Power Base Rule which follows on logbªc = 1/a logbc
8) Power Base/Inverse Rule Setting a = −1 gives log1/b

1/c = logbc
9) Proportionality Rule logba k logca

if we set c = a and remember that logaa = 1

10) Reciprocal Rule logba =  (logab)–1

11) Combination Rule from Rule  3) and 1) logba + k = logb ( a × bk )
12) Exponential Rule

and recollect as long as we are in base b a = blog a

so setting b = e gives a = eln a

giving the key relationship ax = ex ln a       †

 

Notes
There are infinitely many logarithms of a positive number but only one of them is real (Euler)
† This is the theorem which we will later use to raise complex numbers to complex powers.
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Coordinate Geometry - Linear Equations
y = mx + c

ax + by + c = 0
m = (y2 – y1) / (x2 – x1)

y – y1 = m ( x – x1 )
(y – y1) / (y2 – y1) = (x – x1) / (x2 – x1)

if  m1m2 = –1 then lines are perpendicular

midpoint line (x1 , y1) to (x2 , y2) is {½(x1+x2) , ½(y1 + y2)}
distance between (x1 , y1) and (x2 , y2) is

√{(x2 – x1)² + (y2 – y1)²}
equation of perpendicular bisector of (x1 , y1) and (x2 , y2) is

(x1 – x2)x + (y1 – y2)y = ½{(x1² – x2²) + (y1² – y2²)}
Equation circle centre (h,k) and radius r is

(x – h)² + (y – k)² = r²
Perpendicular distance from (h,k) to ax + by + c = 0

= ah + bk +c/ √(a² + b²)
Acute angle f between lines with gradients m1 and m2

= tan–1 (m1 – m2) / (1 + m1m2)
If m1m2 = –1 then the above gives tan–1 =∞  and hence f = 90° ie lines perpendicular

Coordinate Geometry - Circle
(x – h)² + (y – k)² = r² for circle centre (h,k) and radius r

Notes

as
 tan q − tan f / 1 + tan q tan f = tan ( q − f ) then you might deduce that

 tan−1( q − f / 1 + q f) = tan−1 q − tan−1f which looks logically correct.

but as tan isn't a one-to-one function the RHS can be out by ± p

Try putting m1=1 and m2=
−2 and you'll get − 72º (correct) and 108º (sort of incorrect)
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Area of a Triangle
Sides are a b  and c, angles are A B and C.

Further s is semiperimeter R is radius circumcircle and r is the radius of the inscribed circle.

AD = ½ a b sin C †

AD = ½ { a² sinB sinC / sin(B+C) }
†

AD = [ s (s − a)(s − b)(s − c)] Heron's formula

AD = ½  abs det.  {1,−1, 1; x1, x2, x3; y1, y2, y3}
= ½ │x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)│

the excel function is MDETERM

AD = s × r which is pretty neat ! ‡

AD = ¼ abc/R
‡

Area of Quadrilaterals (using term "s" for semi-perimeters)

area = (s − a)(s − b)(s − c)(s − d) − abcd × cos² ½(A + C)] †

This is Bretschneider's formula for any quadrilateral. For a cyclic quadrilateral this reduces to

area = (s − a)(s − b)(s − c)(s − d)]

This is Brahmagupta's formula for any cyclic quadrilateral. For a triangle this reduces to

area = [s(s − a)(s − b)(s − c)] see above

Notes
† 

Equating these two gives us the (obvious) relationship sin A = sin (B + C)
‡ Equating these two gives us the relationship R r = ½abc/(a+b+c)

† A and C are opposite angles.

Bretschneider's formula is due to Coolidge who derived it from a related relationship
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Modelling using Sin and Cos Functions
As our variable is usually t let's use H(t) for the function rather than y =

strictly H(t) = A sin (wt + f) + k

where A = amplitude ½ (max value − min value)

and w = angular frequency    360º / T

T is the period  , the time for one complete cycle

and f = phase positive values f shift the curve back

negative values of f shift the curve forward

At IB Studies level all curves encountered can be modelled by positive/negative sine / cosine .

sine curves start at 0, cosine curves start at max. Watch out for negatives (inversion of curve)

and k = axis (centre line) ½ (max value + min value)

Procedure
Look at the data given.

Find the maximum value , the minimum value and the period.

Calculate the amplitude A, the frequency w and the axis value k.

By inspection identify if function is 
+sin −sin +cos or  −cos

Write down the equation and enter it into your calculator.

Use trace function to find any particular value of H(t) or t {ie on your calculator y or x}.

You need to set the WINDOWS y values to roughly to ± 2A and x values roughly to ± 2T

Alternatively use the Table option on your calculator

Notes
cosine is sine shifted back 90º so cos x = sin (x + 90)

In higher maths we often work in radians where 2pc = 360º ( c means radians, often omitted)
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Linear Interpolations
For function ƒ(x) find two values that sandwich a root a

a = ƒ(a) −ve value

b = ƒ(b) + ve value

then first approximation a is a0 where

a0 = ƒ(b)a −  ƒ(a) b / ƒ(b) − ƒ(a) (actually adding)

Trapezium Rule

a
b y dx = ½ h [y0 + 2 ( y1 + y2 …+ yn−1 ) + yn]

where  h = b − a /n
and  yi = ƒ(a + ih)

Newton-Raphson Iteration
ƒ(x) = 0 : xn+1 = xn  − ƒ (xn) / ƒ´(xn)

Approximations where x is small

sin x  x

cos x  1 − ½ x²

tan x  x so for small x we have  sin x  tan x

(1 + x)½  1 + 1/2 x − 1/8 x² for x→dx 2 terms suffice

ln (1 + x)  1 − 1/2 x²

ex  1 + x + 1/2 x²

Numerical Solution of Differential Equations

(dy/dx)0  y1 − y0 / h

(dy/dx)0  y1 − y−1 / 2h

(d²y/dx²)0  y1 − 2y0 + y−1 / 2h
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Sequences and Sums - find the next sequence and sum

5) Square Numbers Pattern

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

What comes next?

6) Triangular and Square Numbers
0 + 1 = 12 S1 = 1
1 + 3 = 22 S2 = 4
3 + 6 = 32 S3 = 9
6 + 10 = 42 S4 = 16

What comes next?

7) Triangular Numbers Pattern
1 + 3 + 6 = 10

15 + 21 + 28 + 36 = 45 + 55
66 + 78 + 91 + 105 + 120 = 136 + 153 + 171

What comes next?

8) Cubes and Triangular Numbers
13 = 12 (T1)

2

13 + 23 = 32 (T2)
2

13 + 23 + 33 = 62 (T3)
2

13 + 23 + 33 + 43 = 102 (T4)
2

What comes next?
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Domain and Range Domain is R Codomain is R

Function inj sur T x Image y

sin x odd 1 5 2p ( –,+) [ –1,+1 ]
sin–1 x odd 2 3  [ –1,+1 ] [ –½p,½p ]
cosec x odd 1 5 2p ( –,+) #1 ( –,–1 ] [ 1,+)
cosec–1x odd 2 34  ( –,–1 ] [ 1,+) ( –p,0 ) ( 0,p)
cos x even1225 2p ( –,+) [ –1,–1 ]
cos–1 x  2 3  [ –1,–1 ] [ 0,p ]

sec x even1225 2p ( –,+) #2 ( –,–1 ] [ 1,+)
sec–1 x  2 3  ( –,–1 ] [ 1,+) [ 0,½p ) ( ½p,p ]
tan x odd 1 1 2p ( –,+) #2 ( –,+)
cot x odd 1 1 2p ( –,+) #1 ( –,+)
tan–1 x odd 2 3  ( –,+) ( –½p,½p )
cot–1 x ? 2 3  ( –,0 ) ( 0,+) #3 ( 0,p ) #4

sinh x odd 3 1  ( –,+) ( –,+)
sinh–1 x odd 3 1  ( –,+) ( –,+)
cosech x odd 3 4  ( –,0 ) ( 0,+) #3 ( –,0 ) ( 0,+)
cosech–1x odd 3 4  ( –,0 ) ( 0,+) #3 ( –,0 ) ( 0,+)
cosh x even 2 2  ( –,+) [ 1,+)
cosh–1 x  4 3  [ 1,+ ) [ 0,+)
sech x even 2 2  ( –,+) ( 0,+1 ]
sech–1 x  4 3  ( 0,+1 ] [ 0,+)
tanh x odd 3 6  ( –,+) ( –1,+1 )
tanh–1 x odd 3 1  ( –1,+1 ) ( –,+)
coth x odd 3   ( –,0 ) ( 0,+) #3 ( –,–1 ) ( 1,+)
coth–1 x odd 3 4  ( –,–1 ) ( 1,+) ( –,0 ) ( 0,+)
#1 x np #2 x ½p+np #3 ( –,0 ) ( 0,+) xR x 0
#4  This definition gives a continuous function. TI-83 will plot function in 3rd quadrant not 2nd
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Sequences and Sums - find the next sequence and sum

13) Cubes and Differences Triangular Numbers

23 = 32 – 12 (T2 – T1)

33 = 62 – 32 (T3– T2)

43 = 102 – 62 (T4 – T3)

53 = 152 – 102 (T5 – T4)

What comes next?

14) Sum Cubes and Product Squares

13 = ¼ × 12 × 22

13 + 23 = ¼ × 22 × 32

13 + 23 + 33 = ¼ × 32 × 42

13 + 23 + 33 + 43 = ¼ × 42 × 52

What comes next?

15) Centred Triangular Numbers
3 x 1 + 1 = 4 Tc2

3 x 3 + 1 = 10 Tc3

3 x 6 + 1 = 19 Tc4

3 x 10 + 1 = 31 Tc5

What comes next?

16) Perfect Numbers (sum factors = 2n)
1 + 2 + 3 = 6

1 + 2 + 3 + 4 + 5 + 6 + 7 = 28
Double last number sequence and add 1. If prime then sequence sum is perfect number.

7x2+1 = 15. Not prime. 15 x 2 + 1 = 31. Prime.

1 + 2 + 3 + 4 + 5 + … + 31 = 496
31x2+1 = 63. Not prime. 63 x 2 + 1 = 127. Prime.

1 + 2 + 3 + 4 + 5 + … + 127 = 8128
What comes next? (This is tricky)

rg



Conics Ellipse Parabola Hyperbola Rectangular

Hyperbola

Standard Form x²/a² + y²/b² = 1y² = 4ax x²/a² − y²/b² = 1 xy = c²

Parametric (acosq,bsinq) (at², 2at) (asecq,btanq) (ct, c/t)
Form (±acoshq,bsinhq)

Eccentricity e < 1 e > 1
b² = a²(1−e²) e = 1 b² = a²(e²−1) e = 2 

Foci ( ±ae,0) (a,0) ( ±ae,0) ( ±2c, ±2c)

Directrices  x = ±a/e x = −a  x = ±a/e x + y = ±2c

Asymptotes none none x/a = ±y/b x = 0, y=0

Curvature

r = k = ds/dy

Arc Length
s = xAxB  [1+(dy/dx)² ] dx cartesian coord.

OR s = yAyB  [1+(dx/dy)² ] dy cartesian coord.

OR s = tAtB  [(dx/dt)²+(dy/dt)²] dt parametric form

s =   {r²+(dr/dq)² } dq polar coord.

Surface Area of Revolution
sx = xAxB 2py  [1+(dy/dx)² ] dx cartesian coord.

sy = yAyB 2px  [1+(dx/dy)² ] dx cartesian coord.

= tAtB 2py  [(dx/dt)²+(dy/dt)²] dt parametric form

Notes
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Theory of Equations
If we have (x + a 1 )(x + a 2 )(x + a 3 )(x + a 4 ) …(x + a n ) the expansion is

x n  + (a 1  + a 2  + a 3  + a 4 … a n ) x n−1

+ (a 1 a 2  + a 1 a 3  + … a 1 a n  + a 2 a 3  + a 2 a 4  … a 2 a n + …a n−1 a n )x n−2

+ (a 1 a 2 a 3 +a 1 a 2 a 4 + … a 1 a 2 a n +a 1 a 3 a 4 +a 1 a 3 a 5 + … a 1 a 3 a n+ …a n−1 a n−1 a n )x n−3

+ (a 1 a 2 a 3 a 4 + …a n−2 a n−1 a n )

so if the original coefficients are real then both sum and product all roots must be real.

so (I have read but don't quite see why) there must be at least one pair of roots such that

(a + ib) + (c + id) = p + 0i

(a + ib) . (c + id) = q + 0i

it is then easy to show that a = c and b = −d
so all the roots can be put into conjugate pairs.

This is a sufficient condition but not a complete proof that it is a necessary condition.

If there is an odd number of roots the remaining root must be real.

Graphically algebraic functions of odd order must cross the x-axis somewhere.

If I multiply out ( x + a + ib )( x + a − ib )( x + c + id )( x + c − id ) I get all real coeff.

x4+[2a+2c]x3+[a2+b2+c2+d2+4ac]x2+[(2c)(a2+b2)+(2a)(c2+d2)]x+[a2c2+a2d2+b2c2+b2d2]

so if I then hypothesise solutions (1 + 2i) (1 − 2i) (3 + 4i) (3 − 4i) to a quartic equation

substituting these values for x into equ. x 4 + 8x 3 + 42x 2 + 80 x + 125 gives 0 each time.

So now I think I understand why solutions to equations must come in conjugate pairs.

Notes

i is qualitatively indistinct from its additive and multiplicative inverse − i [eg i² = ( − i)²]

So for many natural settings if a complex number provides a solution so will its conjugate.

This also explains the restriction when splitting surds.  Numbers must be real and positive

because the mathematics cannot distinguish between – i and + i
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Orders of Magnitude
septillionth yocto- y 10−24 septillion yotta- Y 1024

sextillionth zepto- z 10−21 sextillion zetta- Z 1021

quintillionth atto- a 10−18 quintillion exa- E 1018

quadrillionth femto- f 10−15 quadrillion peta- P 1015

trillionth pico- p 10−12 trillion tera- T 1012

billionth nano- n 10−9 billion giga- G 109

millionth micro- µ 10−6 million mega- M 106

thousandth milli- m 10−3 thousand kilo- k 103

hundredth centi- c 10−2 hundred hecto- h 102

tenth deci- d 10−1 ten deca- da 101

one - - 100 one - - 100

Mathematical Constants - 30 decimals (last place not rounded)

pi p = 3.14159 26535 89793 23846 26433 83279…

exponential e = 2.71828 18284 59045 23536 02874 71352…

Pythagoras's √2 = 1.41421 35623 73095 04880 16887 24209…

√3 = 1.73205 08075 68877 29352 74463 41505…

log 2 = 0.69314 71805 59945 30941 72321 21458…

golden ratio f = 1.61803 39887 49894 84820 45868 34365…

Euler-Mascheroni g = 0.57721 56649 01532 86060 65120 90082…

Feigenbaum's d = 4.66920 16091 02990 67185 32038 20466…

x(2) = 1.64493 40668 48226 43647 24151 66646…

Apery's x(3) = 1.20205 69031 59594 28539 97381 61511…

x(4) = 1.08232 32337 11138 19151 60036 96541…

Euler's x(5) = 1.03692 77551 43369 92633 13654 86457…

x(6) = 1.01734 30619 84449 13971 45179 29790…

ep = 23.14069 26327 79269 00572 90863 67948…
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Prime Numbers (in columns of 25)
2 101 233 383 547 701 877 1049 1229 1429 1597 1783
3 103 239 389 557 709 881 1051 1231 1433 1601 1787
5 107 241 397 563 719 883 1061 1237 1439 1607 1789
7 109 251 401 569 727 887 1063 1249 1447 1609 1801

11 113 257 409 571 733 907 1069 1259 1451 1613 1811
13 127 263 419 577 739 911 1087 1277 1453 1619 1823
17 131 269 421 587 743 919 1091 1279 1459 1621 1831
19 137 271 431 593 751 929 1093 1283 1471 1627 1847
23 139 277 433 599 757 937 1097 1289 1481 1637 1861
29 149 281 439 601 761 941 1103 1291 1483 1657 1867
31 151 283 443 607 769 947 1109 1297 1487 1663 1871
37 157 293 449 613 773 953 1117 1301 1489 1667 1873
41 163 307 457 617 787 967 1123 1303 1493 1669 1877
43 167 311 461 619 797 971 1129 1307 1499 1693 1879
47 173 313 463 631 809 977 1151 1319 1511 1697 1889
53 179 317 467 641 811 983 1153 1321 1523 1699 1901
59 181 331 479 643 821 991 1163 1327 1531 1709 1907
61 191 337 487 647 823 991 1171 1361 1543 1721 1913
67 193 347 491 653 827 1009 1181 1367 1549 1723 1831
71 197 349 499 659 829 1013 1187 1373 1553 1733 1933
73 199 353 503 661 839 1019 1193 1381 1559 1741 1949
79 211 359 509 673 853 1021 1201 1399 1567 1747 1951
83 223 367 521 677 857 1031 1213 1409 1571 1753 1973
89 227 373 523 683 859 1033 1217 1423 1579 1759 1979
97 229 379 541 691 863 1039 1223 1427 1583 1777 1999

Notes
Prime Number Theorem states that the number of primes up to n, pn ~ n/ln(n)

Alternatively the nth prime number pn ~ n ln(n). So p300 ~ 300 ln 300 = 1711 (cf 1999)

If li =dt/lnt then Li(x) = 2
x dt/lnt = li(x) − li(2) is a better approximation to p(x)

Goodhand's conjecture states the percent proportion of primes approximately equals the

percent that n / ln(n)  underestimates p(n). Hence p (n) better ≈ ½(1– √{1 – 4 / ln(n) }

rg



Counting

No. Greek Latin

1 mono uni

2 duo bi

3 tri tri

4 tetra quad

5 penta quin

6 hexa sex

7 hepta sept

8 octo oct

9 nona non

10 deca dec

These booklets are written and produced by Robert Goodhand

Although the formulae and expressions given have been individually derived and checked errors do

creep in. The booklets are also continuously updated.

If you would like the latest issue, just email me at robert.goodhand@gmail.com
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