Derivation

Suppose I have an arithmo-geometric series of six terms
$S_{6} \quad=a+(a+d) r+(a+2 d) r^{2}+(a+3 d) r^{3}+(a+4 d) r^{4}+(a+5 d) r^{5}$

$$
=\mathrm{a}+\mathrm{ar}+\mathrm{ar}{ }^{2}+a r^{3}+a r^{4}+a r^{5}+d r+2 d r^{2}+3 d r^{3}+4 d r^{4}+5 d r^{5}
$$

$\mathrm{rS}_{6}=\mathrm{ar}+\mathrm{ar}^{2}+\mathrm{ar}^{3}+\mathrm{ar}^{4}+\mathrm{ar}^{5}+\mathrm{ar}^{6}+\mathrm{dr}^{2}+2 \mathrm{dr}^{3}+3 \mathrm{dr} r^{4}+4 \mathrm{dr}^{5}+5 \mathrm{dr}{ }^{6}$
$S_{6}-r S_{6}=\left(a-a r^{6}\right)+d r+d r^{2}+d r^{3}+d r^{4}+d r^{5}-5 d r^{6}$
$=\left(a-a r^{6}\right)+d\left(r+r^{2}+r^{3}+r^{4}+r^{5}\right)-5 d r^{6}$
$S_{6}(I-r)=a\left(I-r^{6}\right)+d r\left\{\left(I-r^{5}\right) /(I-r)\right\}-5 d r^{6}$
and I can see that in general
$S_{n}(I-r)=a\left(I-r^{n}\right) /(I-r)+d r\left(I-r^{n-1}\right) /(I-r)^{2}-(n-I) d r^{n} /(I-r)$
which doesn't look particularly simpler.
However if $r<1$ then
$S_{\infty}=\mathrm{a} /(\mathrm{I}-\mathrm{r})+\mathrm{dr} /(\mathrm{I}-\mathrm{r})^{2}$
which is a bit neater.

Example

Let $S_{5}=3+5 x+7 x^{2}+9 x^{3}+11 x^{4}$
giving $a=3 d=2$ and $r=x$. So from our formula
Let $\mathrm{S}_{5}=3\left(1-\mathrm{x}^{5}\right) /(\mathrm{I}-\mathrm{x})+2 \mathrm{x}\left(\mathrm{I}-\mathrm{x}^{4}\right) /(\mathrm{I}-\mathrm{x})^{2}+8 \mathrm{x}^{5} /(\mathrm{I}-\mathrm{x})$
which seems to move us from bad to worse. However if I enter onto my TI-83 as $Y I$ and $Y 2 I$ can see that the functions are equivalent except $Y 2$ is undefined at $x=I$ as expected. To test my infinite sum I try
$S=3+5 / 2+7 / 4+9 / 8+11 / 16+13 / 32 \ldots$
but my formula gives $3 / 1 / 2+1 /(1 / 2)^{2}=10$
If I sum the series to I I terms I get 9.97 which seems a fair indication correct.

