Bayes Theorem

Suppose we shake one dice. The dice could land One, two ,three , four, five , six. If we shake the dice a large number of times the proportion of say "five" to the total number of throws approaches I/6.

We therefore say P ("five") $=\mathrm{I} / 6$.
The probability of a "five" is one in six.
Suppose we shake two die. We can now chart out the possible outcomes.

	I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
I	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12

Now suppose we wanted the probability that the total was greater than 8.

	I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
I	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12
P (total $>8)=10 / 36$ (leave in this form)						

Now suppose we wanted the probability that either die showed a "five"

	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
1	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12

Remembering that in probability OR means "either or both"
$P($ either shows 5$)=11 / 36$
Now let's define $P(A / B)$ as meaning the probability of A happening given that we know that B has already happened.

So if we let $A=$ "total >8 "
and $\mathrm{B}=$ "either shows 5 "
First consider how many outcomes are both "total > 8" AND "either shows 5"

	I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12

There are only five throws that meet both.

So $P($ total $>8 /$ either shows 5$)=5 / 11$
But $P($ either shows $5 /$ total $>8)=5 / 10$

Bayes Theorem

Note that
$P($ total >8 AND either shows 5$)=5 / 36$
but also equals
$P($ total $>8 /$ either shows five $) \times$
P (either shows 5)
$5 / 11 \times 11 / 36=5 / 36$ as expected.
But we can also turn around
$P($ either shows 5 AND total $>8)=5 / 36$
but also equals
$P($ either shows $5 />8) \times P($ total $>8)$
$5 / 10 \times 10 / 36=5 / 36$ again as expected.
But now we equate the two
$P($ total $>8 /$ either shows five $) \times$
P (either shows 5)
$=P($ either shows $5 /$ total $>8) \times$

$$
P(\text { total }>8)
$$

Now to make this clearer let
$P($ over 8$)=P(A)$
$P($ either 5$)=P(B)$
so we can rearrange to give
$P(A / B)=P(B / A) \times P(A) / P(B)$
which is Bayes Theorem

Practical Outcomes

Suppose we said $\mathrm{P}(\mathrm{A})=$ probability covid and $P(B)=$ positive on a test

We want nearly everyone who has covid to show up on the test so we design $P(B / A)=99 / 100$ so few slip through.

But suppose $\mathrm{P}(\mathrm{A})=\mathrm{I} / 5$
so $P(B) \cong 25 / 100$
$P(A / B)=P(B / A) \times P(A) / P(B)$
$=95 / \mathrm{I} 00 \times \mathrm{I} / 5 / 99 / \mathrm{I} 00=19 / 99 \cong 20 \%$
That is by making sure the test "catches everyone" who does have covid that doesn't mean being positive on the test means you really do have covid. There's a world of difference between testing positive given you really do have covid and you really do have covid given you've tested positive. Setting the bar high means a lot of false positives will occur. This phenomena becomes particularly noticeable when you try and test for something that has a relatively low incidence of occurring in the population. Bayes theorem will show that even when you get a positive result the probability that you actually have the condition is still very low and further tests are required.

Appendix Further Proof

This is the proof I ws given when undertaking a postgraduate certificate.

Define $\mathrm{P}(\mathrm{A} / \mathrm{E})$ as the probability A given E
Now assume the probability of A occurring given that event E has already occurred is some function of probability of A AND E occurring say k.

We define $\mathrm{P}(\mathrm{A}$ AND E$)$ as $\mathrm{P}(\mathrm{A} \cap \mathrm{E})$ termed intersection.

Terefore $\mathrm{P}(\mathrm{A} / \mathrm{E})=\mathrm{k} \mathrm{P}(\mathrm{A} \cap \mathrm{E})$
Now $P(A / A)=k P(A \cap A)=k P(A)=1$
So $k=1 / P(A)$ and we immediately derive
$\mathrm{P}(\mathrm{A} / \mathrm{E})=\mathrm{P}^{\mathrm{P}(\mathrm{A} \cap \mathrm{E})} /_{\mathrm{P}(\mathrm{E})}$
$\mathrm{P}(\mathrm{A})$ is termed the prior probability
E is additional information probability
$P(E)$
$\mathrm{P}(\mathrm{A} / \mathrm{E})$ is the posterior probability.

