Bayes Theorem

Suppose we shake one dice. The dice could land One, two ,three , four, five , six. If we shake the dice a large number of times the proportion of say "five" to the total number of throws approaches 1/6. We therefore say P("five") = 1/6. The probability of a "five" is one in six. Suppose we shake two die. We can now chart out the possible outcomes.

	I	2	3	4	5	6
I	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	П
6	7	8	9	10	П	12

Now suppose we wanted the probability that the total was greater than 8.

	I	2	3	4	5	6
I	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	н
6	7	8	9	10	-11	12

P (total > 8) =
$$\frac{10}{_{36}}$$
 (leave in this form)

Now suppose we wanted the probability that either die showed a "five"

	Т	2	3	4	5	6
L	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	н
6	7	8	9	10	- 11	12

Remembering that in probability OR means "either or both"

P (either shows 5) = $\frac{11}{_{36}}$

Now let's define P(A/B) as meaning the probability of A happening given that we know that B has already happened.

So if we let A = "total > 8"and B = "either shows 5"

First consider how many outcomes are both "total > 8" AND "either shows 5"

	Т	2	3	4	5	6
I	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	н
6	7	8	9	10	н	12

There are only five throws that meet both.

So P (total >8 / either shows 5) = $^{5}/_{11}$

But P (either shows 5 / total > 8) = $\frac{5}{10}$

Bayes Theorem

Note that

P (total > 8 AND either shows 5) = $\frac{5}{_{36}}$ but also equals

P (total > 8 / either shows five) ×

P (either shows 5)

 ${}^{5}/_{11} \times {}^{11}/_{36} = {}^{5}/_{36}$ as expected.

But we can also turn around

P (either shows 5 AND total > 8) = $^{5}\!/_{36}$ but also equals

P (either shows 5 / > 8) × P (total > 8) $^{5}/_{10}$ × $^{10}/_{36}$ = $^{5}/_{36}$ again as expected.

But now we equate the two

P (total > 8 / either shows five) ×
P (either shows 5)

= P (either shows 5 / total > 8) ×

P(total > 8)

Now to make this clearer let

$$P$$
 (either 5) = P (B)

so we can rearrange to give

 $P(A/B) = P(B/A) \times P(A) / P(B)$

which is **Bayes Theorem**

Practical Outcomes

Suppose we said P(A) = probability covidand P(B) = positive on a testWe want nearly everyone who has covid to show up on the test so we design P(B/A) = 99/100 so few slip through. But suppose P(A) = 1/5so $P(B) \cong 25/100$ $P(A/B) = P(B/A) \times P(A) / P(B)$

= 95/100 × 1/5 / 99/100 = 19/99 \cong 20%

That is by making sure the test "catches everyone" who does have covid that doesn't mean being positive on the test means you really do have covid. There's a world of difference between testing positive given you really do have covid and you really do have covid given you've tested positive. Setting the bar high means a lot of false positives will occur. This phenomena becomes particularly noticeable when you try and test for something that has a relatively low incidence of occurring in the population.

Bayes theorem will show that even when you get a positive result the probability that you actually have the condition is still very low and further tests are required. ∞ rg

Appendix Further Proof

This is the proof I ws given when undertaking a postgraduate certificate.

Define P (A/E) as the probability A given E

Now assume the probability of A occurring given that event E has already occurred is some function of probability of A **AND** E occurring say k.

We define P(A **AND** E) as P(A \cap E) termed *intersection*.

Terefore $P(A/E) = k P(A \cap E)$

Now P (A/A) = k P(A \cap A) = kP(A) = I

So $k = \frac{1}{P(A)}$ and we immediately derive

 $P(A/E) = {}^{P(A \cap E)} / {}_{P(E)}$

P(A) is termed the prior probability

E is additional information probability P(E)

P(A/E) is the posterior probability.