Calculating Bernoulli Numbers

The recurrence formula is $k=0 \sum^{n-1}\binom{n}{k} B_{k}=0$ with seed $B_{0}=1$

The practicality of this is that we set up the pseudo binomial expansion of $(B+I)^{n}$, eliminate the first term and equate what remains to xero.

Substituting previously known B numbers determines the next.

So $(B+I)^{2}=B^{2}+2 B+I$
Let $2 \mathrm{~B}+\mathrm{I}=0$ giving $\mathbf{B}_{\mathbf{I}}=-1 / 2$
$(B+I)^{3}=B^{3}+3 B^{2}+3 B+I$
Set $3 B^{2}+3 B+I=0$
So $3 B^{2}+3(-1 / 2)+I=0$
giving $B_{2}=1 / 6$
$(B+1)^{4}=B^{4}+4 B^{3}+6 B^{2}+4 B+1$
Set $4 B^{3}+6 B^{2}+4 B+I=0$
So $4 B^{3}+6(1 / 6)+4(-1 / 2)+1=0$
giving $\mathbf{B}_{3}=\mathbf{0}$ perhaps surprisingly.
$(B+I)^{5}$
$=B^{5}+5 B^{4}+10 B^{3}+10 B^{2}+5 B+1$
Set $5 B^{4}+10 B^{3}+10 B^{2}+5 B+1=0$
So $5 B_{4}+10(0)+10(1 / 6)$

$$
+5(-1 / 2)+1=0
$$

giving $B_{4}=-1 / 30$

$$
\begin{aligned}
(B+I)^{6}= & B^{6}+6 B^{5}+15 B^{4} \\
& +20 B^{3}+15 B^{2}+6 B+1
\end{aligned}
$$

Set $6 B^{5}+15 B^{4}+20 B^{3}$

$$
+15 B^{2}+6 B+I=0
$$

So $6 \mathrm{~B}_{5}+15(-1 / 30)+20(0)$

$$
+15(1 / 6)+6(-1 / 2)+1=0
$$

giving $\mathbf{B}_{5}=\mathbf{0}$

$$
\begin{aligned}
(B+I)^{7}= & B^{7}+7 B^{6}+2 I B^{5}+35 B^{4}+ \\
& 235 B^{3}+2 I B^{2}+7 B+1
\end{aligned}
$$

Set $7 B^{6}+21 B^{5}+35 B^{4}$

$$
+35 B^{3}+2 I B^{2}+7 B+I=0
$$

So $7 B_{6}+21(0)+35(-1 / 30)+35(0)$

$$
+21(1 / 6)+7(-1 / 2)+1=0
$$

giving $B_{6}=1 / 42$
$(B+I)^{8}=B^{8}+8 B^{7}+28 B^{6}+56 B^{5}+$

$$
70 B^{4}+56 B^{3}+28 B^{2}+8 B+1
$$

Set $8 B^{7}+28 B^{6}+56 B^{5}+70 B^{4}+$

$$
56 \mathrm{~B}^{3}+28 \mathrm{~B}^{2}+8 \mathrm{~B}+\mathrm{I}=0
$$

So $8 \mathrm{~B}_{7}+28(1 / 42)+56(0)+70(-1 / 30)$
$+56(0)+28(1 / 6)+8(-1 / 2)+1=0$
giving $\mathbf{B}_{\mathbf{7}}=\mathbf{0}$ as expected

$$
\begin{aligned}
& (B+1)^{9}=B^{9}+9 B^{8}+36 B^{7}+84 B^{6} \\
& +126 B^{5}+126 B^{4}+84 B^{3} \\
& \quad+36 B^{2}+9 B+1=0
\end{aligned}
$$

From hereon I'm omitting the odd
terms in the expansion
So $9 B_{8}+84(1 / 42)+126(-1 / 30)$

$$
+36(1 / 6)+9(-1 / 2)+1=0
$$

giving $B_{8}=-1 / 30$
B_{9} is assumed to be $=0$

$$
\begin{aligned}
& (B+1)^{11}=B^{11}+11 B^{10}+55 B^{9}+165 B^{8} \\
& +330 B^{7}+462 B^{6}+462 B^{5}+330 B^{4} \\
& +165 B^{3}+55 B^{2}+11 B+1=0
\end{aligned}
$$

So $11 B_{10}+165(-1 / 30)+462(1 / 42)$
$+330(-1 / 30)+55(1 / 6)$
$+I \mid(-1 / 2)+I=0$
giving $B_{10}=5 / 66$
$(B+1)^{13}=B^{13}+13 B^{12}+78 B^{11}+$ $286 B^{10}+715 B^{9}+1287 B^{8}+1716 B^{7}$
$+1716 B^{6}+1287 B^{5}+715 B^{4}+286 B^{3}$
$+78 B^{2}+13 B+1=0$
So $13 B_{12}+286(5 / 66)+1287(-1 / 30)$
$+1716(1 / 42)+715(-1 / 30)+78(1 / 6)$

$$
+13(-1 / 2)+1=0
$$

giving $B_{12}=-691 / 2730$
and truncating the initial expansion
we have

$$
\begin{aligned}
15 B_{14} & +455(-691 / 2730)+3003(5 / 66) \\
& +6435(-1 / 30)+5005(1 / 42) \\
& +1365(-1 / 30)+105(1 / 6) \\
& +15(-1 / 2)+1=0
\end{aligned}
$$

giving $B_{14}={ }^{7} /{ }_{6}$
which is perhaps also surprising

Patterns of Bernoulli Numbers

The following patterns are observed
B_{n} is always rational.
$B_{2 n+1}=0$ for $n \geq I$.
$\mathrm{B}_{2 \mathrm{n}}$ alternates sign
$\mathrm{B}_{4 \mathrm{n}}<0$ and $\mathrm{B}_{4 \mathrm{n}+2}>0$ for $\mathrm{n} \geq 1$
The magnitude of $B_{2 n}$ grows very quickly

Occurrence of Bernoulli Numbers

In the formula for power series the Bernoulli number is always the last term.
eg $\sum n^{2}=1 / 3 n^{3}+1 / 2 n^{2}+1 / 6 n$
The formula for the squared power series ends in the $2^{\text {nd }}$ Bernoulli number.
$>r g$

