Calculating Bernoulli Numbers

The recurrence formula is $_{k=0}\sum^{n-1} {n \choose k} B_k = 0$ with seed $B_0 = 1$ The practicality of this is that we set up the pseudo binomial expansion of $(B+1)^n$, eliminate the first term and equate what remains to xero. Substituting previously known B numbers determines the next. So $(B+1)^2 = B^2 + 2B + 1$ Let 2B + 1 = 0 giving $B_1 = -\frac{1}{2}$ $(B+1)^3 = B^3 + 3B^2 + 3B + 1$ Set $3B^2 + 3B + 1 = 0$

So $3B^2 + 3(-\frac{1}{2}) + 1 = 0$ giving $B_2 = \frac{1}{6}$

 $(B+1)^4 = B^4 + 4B^3 + 6B^2 + 4B + 1$ Set $4B^3 + 6B^2 + 4B + 1 = 0$ So $4B^3 + 6 (1/6) + 4 (-1/2) + 1 = 0$ giving **B**₃ = **0** perhaps surprisingly.

 $(B+1)^{5}$ = B⁵ + 5B⁴ + 10B³ + 10B² + 5B + 1 Set 5B⁴ + 10B³ + 10B² + 5B + 1 = 0 So 5B₄ + 10 (0) + 10 (¹/₆) + 5 (⁻¹/₂) + 1 = 0 giving **B**₄ = ⁻¹/₃₀

 $(B+1)^6 = B^6 + 6B^5 + 15B^4$ $+ 20B^{3} + |5B^{2} + 6B + |$ Set $6B^5 + 15B^4 + 20B^3$ $+ 15B^{2} + 6B + 1 = 0$ So $6B_5 + 15 (^{-1}/_{30}) + 20 (0)$ $+ 15 (1/_{6}) + 6 (-1/_{2}) + 1 = 0$ giving $\mathbf{B}_5 = \mathbf{0}$ $(B+I)^7 = B^7 + 7B^6 + 2IB^5 + 35B^4 +$ $235B^3 + 2IB^2 + 7B + I$ Set $7B^6 + 2IB^5 + 35B^4$ $+35B^{3} + 2|B^{2} + 7B + | = 0$ So $7B_6 + 21(0) + 35(^{-1}/_{30}) + 35(0)$ $+ 2|(1/_{6}) + 7(-1/_{2}) + | = 0$ giving $\mathbf{B}_6 = \frac{1}{42}$ $(B+I)^8 = B^8 + 8B^7 + 28B^6 + 56B^5 +$ $70B^4 + 56B^3 + 28B^2 + 8B + 1$ Set $8B^7 + 28B^6 + 56B^5 + 70B^4 +$ $56B^3 + 28B^2 + 8B + 1 = 0$ So $8B_7 + 28 (1/_{42}) + 56(0) + 70 (-1/_{30})$ + 56(0) + 28 (1/6) + 8 (-1/2) + 1 = 0giving $\mathbf{B}_7 = \mathbf{0}$ as expected $(B+I)^9 = B^9 + 9B^8 + 36B^7 + 84B^6$ $+ 126B^{5} + 126B^{4} + 84B^{3}$ $+ 36B^{2} + 9B + 1 = 0$

From hereon I'm omitting the odd

terms in the expansion So $9B_8 + 84 (1/_{42}) + 126 (-1/_{30}) + 36 (1/_6) + 9 (-1/_2) + 1 = 0$ giving $B_8 = -1/_{30}$ B_9 is assumed to be = 0 $(B+1)^{11} = B^{11} + 11B^{10} + 55B^9 + 165B^8 + 330B^7 + 462B^6 + 462B^5 + 330B^4 + 165B^3 + 55B^2 + 11B + 1 = 0$ So $11B_{10} + 165 (-1/_{30}) + 462 (1/_{42}) + 330 (-1/_{30}) + 55 (1/_6) + 11 (-1/_2) + 1 = 0$ giving $B_{10} = 5/_{66}$

$$(B+1)^{13} = B^{13} + 13B^{12} + 78B^{11} + 286B^{10} + 715B^9 + 1287B^8 + 1716B^7 + 1716B^6 + 1287B^5 + 715B^4 + 286B^3 + 78B^2 + 13B + 1 = 0$$

So $13B_{12} + 286 (5/66) + 1287 (-1/30) + 1716 (1/42) + 715 (-1/30) + 78 (1/6) + 13 (-1/2) + 1 = 0$
giving $\mathbf{B}_{12} = \frac{-691}{2730}$

and truncating the initial expansion we have

$$I5B_{14} + 455 ({}^{-691}/_{2730}) + 3003 ({}^{5}/_{66}) + 6435 ({}^{-1}/_{30}) + 5005 ({}^{1}/_{42}) + I365 ({}^{-1}/_{30}) + I05 ({}^{1}/_{6}) + I5 ({}^{-1}/_{2}) + I = 0$$

giving $\mathbf{B}_{14} = {}^7I_6$ which is perhaps also surprising

Patterns of Bernoulli Numbers

The following patterns are observed B_n is always rational. $B_{2n+1} = 0$ for $n \ge 1$. B_{2n} alternates sign $B_{4n} < 0$ and $B_{4n+2} > 0$ for $n \ge 1$ The magnitude of B_{2n} grows very quickly

Occurrence of Bernoulli Numbers

In the formula for power series the Bernoulli number is always the last term.

eg $\sum n^2 = \frac{1}{3} n^3 + \frac{1}{2} n^2 + \frac{1}{6} n$ The formula for the squared power series ends in the 2nd Bernoulli number.

 ∞ rg