

Mr G’s Little Book on

The Church-

Turing Thesis
or

Can machines ever be conscious and exhibit strong AI?

Preface

The “mechanics” of this booklet are a rewrite of Section 2.5 of Roger Penrose’s book

“Shadows of the Mind”. I was inspired to pursue this theme after first reading “Gödel,

Escher, Bach” by Douglas Hofstadter which itself started out as a pamphlet on Godel’s

Incompleness Theorem.

Penrose himself raises and demolishes 9 possible objections to the conclusion that the

human mind is following a non-computable algorithm. He then hypothesises that the mind

has quantum enhanced elements. Quantum computers are only briefly mentioned as a

theoretical possible but these have now been developed as working machines albeit not yet

very practical.

So even if Skynet is still a possibility consciousness won’t spontaneously arise as the

Terminator franchise suggests. That doesn’t rule out the possibilities of machine

consciousness – but it can’t happen within the limitations of today’s hard-wired computer no

matter how complex. Strong Artificial Intelligence does however remains a possibility through

quantum computing though I do not personally believe that.

This booklet reformulates the C-T Thesis in terms of the modern computer which is now

familiar to most of us.

Artificial Intelligence

Since originally writing this, the

question of AI is now a serious

concept.

Weak AI does not require a

consciousness machine – just that the

machine is operating at a level of

sophistication that it appears to display

a degree of intelligence

Medical screening is about to be

relegated to the machine and therefore

must pass a weak AI test – I wouldn’t

want my bowel cancer sample decided

by an idiot.

However strong AI includes the

concept of consciousness which is

addressed in this booklet.

The Church-Turing Thesis

Imagine you have a giant folder

containing listings of every possible

computer program. They can be

written in any sensible computer

language – BASIC would be fine. The

only constraints are that

 they all start with the first line

INPUT (n) – that is the program

starts with inputting an integer,

and

 they all end with the command

STOP,

though whether the program ever gets

to the last line is key to this whole

booklet.

You might argue such a folder would be

impossible to create but you could

easily employ another program, call it

GAMMA, to write every one simply by

creating every possible combination of

allowable commands. The fact that

most of the programs will be

meaningless rubbish is neither here nor

there.

Number the programs C1 C2 C3 ….

Specify what happens when each

program in turn has input n, by the

term C1(n) C2(n) C3(n)….

The general term is thus

Cq(n) is what happens when the qth

program is fed the number n.

Now these programs, if the list is

complete, will include every possible

mathematics problem.

A simple one might be “Find an odd

number that is the sum of n odd

numbers”.

We can see immediately that the

program will stop when n= 1 or 3 or 5

etc. but will never stop for n = 2 or 4

or 6 – because two odd numbers will

always make an even number, never

another odd number.

So our poor computer program is

churning away trying to find an odd

number that is two other odd numbers

added together and never STOPping –

yet we can immediately perceive the

task to be hopeless.

How did we achieve our conclusion?

We used our brains which some might

say is just another very complex

computer program. Mind you, the

problems won’t all be that easy – some

problems have taxed the minds of

mathematicians for centuries and many

are still unsolved.

By unsolved we mean

 we don’t yet know the answer

 it has yet to be proved there is

no answer.

 It might even be undecidable –

that is it can be considered as

either true or false within the

system.

The third possibility arises through

Godel’s Incompleteness Theorem

which scuppered the dream that

mathematicians would eventually know

everything. It is known there exists at

least one undecidable proposition – the

“continuum hypothesis – but there may

exist undecidable proposition that

cannot be shown to be undecidable.

Now we state clearly that whatever we

mean

“No answer” equates to our

program Cq(n) not STOPping.

Clearly this is an unsatisfactory state of

affairs because how do we ever know

the computer programme might just be

about to stop. Also computer time is

valuable. There are so many other

things it could be doing. We can’t have

it churning away forever on some

particular problem that has no answer.

We need it just to concentrate on

those problems that have a solution, so

then it can churn away usefully and

eventually find the answer.

So we employ a group of very clever

mathematicians – and I mean real

people - and they sift through all the

programs C1 C2 C3…and all the values

of n that might be inputted (n=1 n=2

n=3 etc.) putting to one side those that

they can already “prove” won’t STOP.

Then one day this group of

mathematicians gives you a very useful

present. It is a computer program, call

it A, that combines all their experience

and knowledge.

“This program” the leader explains,

“will free us to get on with something

else. Just feed in the details of each

program and the value to be

INPUTTED and the program A will tell

you if C will not stop.”

Quite what A does if C does STOP

actually need not concern us – the only

condition is that, without error, A sifts

out the non-STOPping programs so

they never get activated and waste lots

of valuable computing time.

In that pile will be statements like “n

odd numbers can add up to an even

number” so we do in fact salvage

something useful from the

nonSTOPPING.

Now we have A we just input two

numbers, q the number of the C

program and n the number to be

INPUTTED.

Call that A(q,n).

So Rule (1) is

If A(q,n) STOPS then Cq(n) does not

stop.

Now q can have any value, so let’s give

it the value n.

So Rule (2) is

If A(n,n) stops then Cn(n) does not

stop.

Now if you’ve followed this far, pay

particular attention because for certain

you’ll think a trick has been played on

you when you get to the end.

As A(n,n) is a computer program

dependent on just one input n (that’s

why we set q to n so it would meet this

condition) and we have already created a

list of every possible computer

program requiring just a single input, so

it must already be one of the C

programs!

We don’t know which one so just call

it k for now.

So Rule (3) A(n,n) = Ck(n)

Now n can also take any value, so why

not give it the value k.

So Rule (4) A(k,k) = Ck(k)

Using Rule (2) with n = k

If A(k,k) stops then Ck(k) does not stop

But we already know that

A(k,k) = Ck(k)

so we finally demonstrate

If Ck(k) stops then Ck(k) does not stop.

which is a pretty amazing conclusion by

any standards.

Discussion

But what does this actually mean? For

certain the program Ck(k) does not in

fact stop, but our super computer

program A cannot ever demonstrate

this. But as we know that Ck(k) doesn’t

stop, we know something that A(k,k)

doesn’t know.

But A(k,k) was supposed to

encapsulate all the methods of the most

brilliant mathematicians and presumably

they could eventually have worked out

if Ck(k) STOPped or not if they’d been

specifically asked.

How can we know something so

obvious and A not know it?

Where you go from here depends

largely on your own prejudices, but the

most common stated conclusion is that

the human mind cannot be reduced to

simple computation (a computer

program), because you’ll always know

more than “it” knows. Also no matter

how sophisticated a computer program

someone else creates, you’ll always be

able to fool it with an input that it will

churn away forever on without realising

it.

Conclusions

Does this have a parallel in the world of

computer viruses – no matter how

sophisticated the virus checking

program, will there always be another

virus that will defeat it?

The C-T thesis suggests to me that

there will never be either the

undefeatable computer virus or the

infallible virus checker. Both can

exploit flaws in the other which means

you’ll forever be paying for upgrades

The Church-Turing thesis was first

formulated purely mathematically by

Alonzo Church in 1926 but

reformulated by Alan Turing in terms

of “Turing Machines” or more simply

what today we call computers. He

realised that feeding computers their

own program codes would expose a

limitation in any program that

seemingly never bothers the human

brain. Because we are conscious we can

always step outside the problem and

effectively say, “Ahh – you don’t fool me

– I see what you’ve done”.

Where does that consciousness arise

from though? Is it from the very

complexity of the human brain as the

Terminator films would have us

believe? That is, computers will

spontaneously become conscious when

a certain level of complexity is reached.

It’s a neat idea but one that has no

mathematical basis as just

demonstrated in the Church-Turing

thesis.

So does consciousness come from

some additional element that does not

follow the rules of mathematics? That

suggests the X factor somehow lies

outside the normal physical universe.

 rg 1st March 200

Also available in this series is

 On My TI Calculator what’s the difference between Sx and x?

It’s not what I thought for the first 40 years of the scientific calculator

 Beyond Pascal – Multinomials and Dice Throwing

How a lower set exercise in dice throwing led to the discovery of multinomials

 Conditional Probability and Bayes Theorem

An investigation into the pitfalls of medical screening

 Hypercomplex Numbers

Instead of making i2 = –1 as in complex numbers what if we just make i2 = 1

 Propositional Calculus

Sherlock Holmes was the great inductive detective but not infallible

 The Harmonic Triangle

How investigating harmonic triangles led to the discovery of a universal series

summation formula

