Mr's G's Little Book on

Congruencies

Definitions

We define $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
This is an equivalence, where
a, $\mathrm{b}, \mathrm{m} \in \mathbf{Z}$
and $m \neq 0$
b is the remainder when a is divided by
m, noting that b is not necessarily the
least remainder. So
$\mathrm{a}-\mathrm{b}=\mathrm{km}$ where $\mathrm{k} \in \mathbf{Z}$
eg $17 \equiv 2(\bmod 5)$
$17-2=3 \times 5$

Corollary I

if $\quad \mathrm{a} \equiv \mathrm{b}(\bmod m)$
then $a \equiv(b \pm m)(\bmod m)$
Proof $\mathrm{a}-\mathrm{b}=\mathrm{km}$
so

$$
a-b \pm m=(k \pm l) m
$$

eg $17-2 \pm 5=(3 \pm \mathrm{l}) 5$

Corollary 2

For $\mathrm{a}=\mathrm{b}$
then $\mathrm{b} \equiv \mathrm{b}(\bmod \mathrm{m})$
for every arbitrary natural number m
eg $b-b=0 \times m(i e k=0)$

Corollary 3

if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ then
$\mathrm{ak} \equiv \mathrm{bk}(\bmod \mathrm{mk})$
for $k \in \mathbf{Q}$
providing ak, bk, mk $\in \mathbf{Q}$

Example

let $\mathrm{k}=2 / 3$
$17 \times 2 / 3 \equiv 2 \times 2 / 3(\bmod 5 \times 2 / 3)$ because
$17 \times 2 / 3-2 \times 2 / 3=3 \times 5 \times 2 / 3$ TRUE

Corollary 4

$k a x \equiv a(\bmod a)$
eg $3 \times 17 \times x=17(\bmod 17)$ because $3 \times 17 \times x \equiv \mathrm{k} \times 17$ as we fix $\mathrm{k}=3 \mathrm{x}$

Alternative Definition

For $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
when a is divided by m the positive remainder is the same as when b is divided by m conditional that the remainder b is less than m.
eg $17 \div 5$ has remainder 2 and
$2 \div 5$ also has remainder of 2 .

Proof

If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
then $\mathrm{a}=\mathrm{mq} \mathrm{q}_{1}+\mathrm{r}_{1}$
and $\mathrm{b}=\mathrm{mq}_{2}+\mathrm{r}_{2}$
and ${ }^{(a-b)} / m=\left(q_{1}-q_{2}\right)+\left(r_{1}+r_{2}\right) / m$
As ${ }^{a-b} / m$ is an integer by definition then
$\left(r_{1}+r_{2}\right) / m$ must also be an integer.
But as we have stipulated that
r_{1} and $r_{2}<m$ then $r_{1}-r_{2}=0$ ie $r_{1}=r_{2}$

Examples of Congruencies

$75 \equiv 3(\bmod 12) \quad 10 \equiv-18(\bmod 4)$
$-I \equiv 3(\bmod 4)$
$5=5(\bmod m)$

Theorem I

If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
and $\mathrm{c} \equiv \mathrm{d}(\bmod m)$
then
$(\mathrm{a} \pm \mathrm{c}) \equiv \mathrm{b} \pm \mathrm{d}(\bmod \mathrm{m})$

Proof

let $\mathrm{a}=\mathrm{b}+\mathrm{sm}$
and $\mathrm{c}=\mathrm{d}+\mathrm{tm}$
then $\mathrm{a}+\mathrm{c}=\mathrm{b}+\mathrm{d}+\mathrm{m}(\mathrm{s}+\mathrm{t})$
now as $\mathrm{s}+\mathrm{t}$ must be an integer
then $d+m(s+t)$ implies $d(\bmod m)$
so we have $(a \pm c) \equiv b \pm d(\bmod m)$

Converse

If we can break down a congruence
into $(a+c) \equiv b+d(\bmod m)$
and if we can show that $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
then it must follow that $b \equiv d(\bmod m)$

Example I

$23 \equiv 3(\bmod 10)$
$27 \equiv 7(\bmod 10)$
so $50=3+7(\bmod 10)$
and $50=7+3(\bmod 10)$
Theorem 2
If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
and $\mathrm{c} \equiv \mathrm{d}(\bmod \mathrm{m})$
then $\mathrm{ac}=\mathrm{bd}(\bmod \mathrm{m})$

Proof

let $\mathrm{a}=\mathrm{b}+\mathrm{sm}$
and $\mathrm{c}=\mathrm{d}+\mathrm{tm}$
$\mathrm{ac}=(\mathrm{b}+\mathrm{sm})(\mathrm{d}+\mathrm{tm})$
$=\mathrm{bd}+\mathrm{smd}+\mathrm{tmb}+\mathrm{stmn}$
$\mathrm{ac}=\mathrm{bd}+\mathrm{m}(\mathrm{bt}+\mathrm{sd}+\mathrm{stm})$
and following the same argument from
Theorem I we have

$$
\mathrm{ac}=\mathrm{bd}(\bmod \mathrm{~m})
$$

Example 2

$23 \equiv 3(\bmod 10)$
$27 \equiv 7(\bmod 10)$
so $621=21(\bmod 10) \quad$ TRUE
Remembering our initial proviso that "b" need not necessarily be the least remainder.

Theorem 3

If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ then by Theorem 2
If $a^{2} \equiv b^{2}(\bmod m)$ and in general
If $\mathrm{a}^{\mathrm{n}} \equiv \mathrm{b}^{\mathrm{n}}(\bmod \mathrm{m})$ for n positive
However note that if $\mathrm{a}^{\mathrm{n}} \equiv \mathrm{b}^{\mathrm{n}}(\bmod \mathrm{m})$ it does not necessarily follow that
$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$

Example 3a

$23 \equiv 3(\bmod 10)$
$23^{2} \equiv 3^{2}(\bmod 10)$
$529 \equiv 9(\bmod 10)$

Example 3b

$23^{3} \equiv 3^{3}(\bmod 10)$
$12167 \equiv 27(\bmod 10)$
TRUE
Example 3c
while $I I^{2} \equiv 2^{2}(\bmod I 3)$
$I I \equiv 2(\bmod 13)$
Theorem 4 (transivity)
if $\quad a \equiv b(\bmod m)$
and $\quad \mathrm{b} \equiv \mathrm{c}(\bmod \mathrm{m})$
then $\mathrm{a} \equiv \mathrm{c}(\bmod m)$

Proof

if $\quad a=b+s m$
and $\mathrm{b}=\mathrm{c}+\mathrm{tm}$
then $\mathrm{a}=\mathrm{c}+(\mathrm{s}+\mathrm{t}) \mathrm{m}$
hence $\mathrm{a}=\mathrm{c}(\bmod \mathrm{m})$
following the same argument as
Theorem I

Example 4

If $\quad 15 \equiv \mathrm{I}(\bmod 7)$
and $I \equiv-6(\bmod 7)$
then $15 \equiv-6(\bmod 7)$
This technique can be used to solve
linear congruencies.

Theorem 5

if $\quad h c f(r, m)=1$
then $\quad \mathrm{ar} \equiv \mathrm{br}(\bmod m)$
implies $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$

Proof

if $\quad \mathrm{ra} \equiv \mathrm{rb}(\bmod m)$
then ${ }^{\mathrm{r}(\mathrm{a}-\mathrm{b})} / \mathrm{m}$ is an integer
but if hcf $(r, m)=1$
then ${ }^{(a-b)} / \mathrm{m}$ is also an integer
The remaining part of the proof is assumed but follows from standard number theory.

Example 5a

if
$69 \equiv 6(\bmod 7)$
then $3 \times 23 \equiv 3 \times 2(\bmod 7)$
now as hcf $(3,7)=1$
we can divide through by 3 to get
$23 \equiv 2(\bmod 7)$
TRUE

Example 5b

but note $42 \equiv 18(\bmod 4) \quad$ TRUE

$$
6 \times 7 \equiv 6 \times 3(\bmod 4)
$$

we still have $7 \equiv 3(\bmod 4)$
even though hcf $(6,4)=2$
but just because

$$
30 \equiv 2(\bmod 4)
$$

it doesn't follow that

$$
I 5 \equiv I(\bmod 4)
$$

because hcf $(2,4) \neq$ I
although by corollary 3
$15 \equiv \mathrm{I}(\bmod 2)$

Theorem 6

if $\quad \mathrm{ab} \equiv 0(\bmod m)$
this does not necessarily imply that
$\mathrm{a} \equiv 0(\bmod \mathrm{~m}) \mathrm{NOR} \mathrm{b} \equiv 0(\bmod \mathrm{~m})$
However
if $\quad a b \equiv 0(\bmod m)$
and hcf (b,m) = I
then it does follow that

$$
\mathrm{a} \equiv 0(\bmod \mathrm{~m})
$$

Example 6a

$32 \equiv 0(\bmod 16)$

$$
4 \times 8 \equiv 0(\bmod 16)
$$

TRUE
but $\quad 4 \equiv 0(\bmod 16) \quad$ NOT TRUE
and $8 \equiv 0(\bmod 16) \quad$ NOT TRUE

Example 6b

However

$$
105 \equiv 0(\bmod 5)
$$

TRUE
so $35 \times 3 \equiv 0(\bmod 5)$

TRUE
and $35 \equiv 0(\bmod 5)$
because hcf $(3,5)=1$

Solution of Linear Congruencies

Let $\mathrm{ax} \equiv \mathrm{b}(\bmod \mathrm{m})$
which is equivalent to the Diophantine equation
$a x-m y=b$
To obtain solutions we are investigating
hcf $(\mathrm{a}, \mathrm{m})=\mathrm{bk}$
There are three inter-related results of linear congruencies in one unknown
I) $\mathrm{ax}=\mathrm{b}(\bmod \mathrm{m})$
has no solutions if
$\mathrm{b} / \mathrm{hcf}(\mathrm{a}, \mathrm{m})^{\mathrm{b}} \boldsymbol{\mathrm { b }}$
2) $\mathrm{ax}=\mathrm{b}(\bmod \mathrm{m})$
has hcf (a, m) distinct solutions if
$\mathrm{b} / \mathrm{hcf}(\mathrm{a}, \mathrm{m})=\mathrm{k}$
3) $\mathrm{ax}=\mathrm{b}(\bmod \mathrm{m})$
and hcf $(\mathrm{a}, \mathrm{m})=\mathrm{l}$
then there is one distinct solution
I) and 3) are corollaries of 2)

Examples

a) $2 x=1(\bmod 2)$ has no solutions because
$2 x-1$ is odd and $2 k$ is even so effectively we have

$$
1 / \mathrm{hcf}(2,2) \neq \mathrm{k}
$$

b) $8 x=16(\bmod 12)$
so by inspection solutions are

$$
\begin{aligned}
& x=2(14,26,38, \text { etc. }) \\
& x=5(17,29,41, \text { etc. }) \\
& x=8(20,32,44, \text { etc. }) \\
& x=11(23,35,47, \text { etc. })
\end{aligned}
$$

This is because hcf $(8,12)=4$ so there are 4 distinct solutions.

The solution set is

$$
x=2+3 k(k=0,1,2 \ldots)
$$

c) $2 x \equiv 3(\bmod 5)$
hcf $(2,5)=1$
so we are seeking just one solution

$$
2 \times 4 \equiv 3(\bmod 5)
$$

TRUE
and our solution set is

$$
x=4+5 k(k=0,1,2 \ldots)
$$

Fermat's Little Theorem

For p prime and $\mathrm{a}^{\mathrm{p}-1} \equiv \mathrm{I}(\bmod \mathrm{p})$
If we remove the restriction on a, the theorem can be restated
$\mathrm{a}^{\mathrm{p}} \equiv \mathrm{a}(\bmod \mathrm{p})$ and only if p is prime eg $3^{5} \equiv 3(\bmod 5)$

The RSA cryptosytem, which encodes most secure internet traffic is based on Fermat's Little Theorem

Example

$$
5^{3} \equiv 5(\bmod 3)
$$

So as $5^{3}-5=120$ then

$$
120 \equiv 0(\bmod 3)
$$

TRUE
because 3 is prime
but $3^{4} \equiv 3(\bmod 4)$
NOT TRUE
because 4 is not prime

Wilson's Theorem

For any prime p
$1 \times 2 \times 3 \ldots(p-1)+1 / p$ is an integer
Hence we state
$(\mathrm{p}-\mathrm{I})+\mathrm{I} \equiv 0(\bmod \mathrm{P})$
The converse also holds

If $(p-I)!+I \equiv 0(\bmod p)$
then p is prime though an extremely inefficient way of checking primality.

A consequence of Wilson's Theorem is that if $p=4 k+1$
then $x^{2}+I \equiv 0(\bmod p)$ has a solution

Example

let $\mathrm{p}=7$ (a prime)
$1 \times 2 \times 3 \times 4 \times 5 \times 6+1 / 7=103 \quad$ an integer.

Euler's Totient Function

φ is pronounced "phi"
If m is a natural number then $\varphi(m)$ is the number of natural numbers less than or equal to m and relatively prime to m.
remembering a and b are relatively prime if hcf $(\mathrm{a}, \mathrm{b})=\mathrm{I}$

Examples

$\phi(I)=I\{I\}$
$\phi(2)=I\{I\}$
$\phi(3)=2\{1,2\}$
$\phi(4)=2\{1,3\}$
$\phi(5)=4\{1,2,3,4\}$
$\phi(6)=2\{I, 5\}$
$\phi(7)=6\{1,2,3,4,5,6\}$
$\phi(8)=4\{1,3,5,7\}$
$\phi(9)=6\{1,2,4,5,7,8\}$
$\phi(10)=4\{I, 3,7,9\}$

Note here the φ function is one less when the number is prime. This property will be developed later.

Property I

if hcf $(a, b)=I$ then
$\phi(a \times b)=\phi(a)+\phi(b)$
Example
$\phi(2 \times 3)=\phi(2) \times \phi(3)$
TRUE
Property 2 (Euler's Product Formula)
let $m=P_{1}{ }^{a} P_{2}{ }^{b} P_{3}{ }^{c} \ldots$ (ie prime factors) then
$\varphi(m)=m\left(I-I / p_{1}\right)\left(I-I / p_{2}\right)\left(I-I / p_{3}\right) \ldots$
The proof of this depends upon the
fundamental theorem of arithmetic but is not given in full here.

Example

$$
\begin{aligned}
\phi(2 \times 3) & =6(1-1 / 2)(1-1 / 3)=2 \\
\phi(6 \times 7) & =42(1-1 / 2)(1-1 / 3)(1-1 / 7) \\
& =12
\end{aligned}
$$

where p is prime

$$
\varphi\left(p^{k}\right)=p^{k}(1-1 / p)=p^{k}-p^{k-1}
$$

This follows directly from Property 2
setting $\mathrm{k}=\mathrm{I}$ we have

$$
\varphi(p)=p-1
$$

which was apparent in the initial list of quotient functions.

Example

$\varphi\left(3^{2}\right)=3^{2}-3^{1}=6$
TRUE
because hcf $(3,3)=$ I

Divisor Sum

The divisors of 24 are
I,2 3, 4, 6, 8, I2, 24 and
$\varphi(1)+\varphi(2)+\varphi(3)+\varphi(4)+\varphi(6)+\varphi(8)$
$+\varphi(12)+\varphi(24)=24$
This theorem was discovered by Gauss.

Euler's Theorem

if hcf $(\mathrm{a}, \mathrm{m})=1$
(I omit the hcf from hereon)
then $a^{\varphi(m)} \equiv I(\bmod m)$

Example

as \quad hcf $(5,4)=1$
then $5^{\varphi(4)} \equiv 1(\bmod 4)$
that is $5^{2} \equiv 1(\bmod 4)$
TRUE

Fermat's Theorem

if we set $m=p$ where p is prime
then $a^{\varphi(P)} \equiv I(\bmod p)$
Now we have already established

$$
\varphi(p)=p-1
$$

a special case of
$\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$ when $k=1$
so $a^{p-1} \equiv I(\bmod p)$ where p is prime Euler's Theorem can be used to find the converse of Fermat's Theorem, which introduces the additional condition for $\mathrm{t}<\mathrm{n}-\mathrm{I}$
"If there is an integer a with
hcf $(\mathrm{a}, \mathrm{n}) \equiv \mathrm{I}(\bmod \mathrm{n})$
and furthermore there is no integer t for which at $\equiv \mathrm{I}(\bmod \mathrm{n})$ then n is prime."

Example I

hcf $(5,4)=1$
$5^{\varphi(4)} \equiv I(\bmod 4)$
$5^{2}-I \equiv 0(\bmod 4)$
$24 \equiv 0(\bmod 4)$ which is TRUE

Example 2

hcf $(9,5)=1$
$5^{\varphi(5)} \equiv I(\bmod 5)$
$9^{4}-I \equiv 0(\bmod 5)$
$6560 \equiv 0(\bmod 5)$ which is TRUE

Worked Examples

I) Show $20 \equiv-7(\bmod 9)$

$$
20--7 \equiv 0(\bmod 9)
$$

2) Show $8 \equiv 23(\bmod 5)$ $8-23 \equiv 0(\bmod 5)$
3) Show $3^{3} \equiv 1(\bmod 13)$ $27-1 \equiv 0(\bmod 13)$
4) let $12 \equiv 2(\bmod 5)$
$16 \equiv 1(\bmod 5)$
so $28 \equiv 2+I(\bmod 5)$
or $28 \equiv 1+2(\bmod 5)$
and $4 \equiv \mathrm{I}-2(\bmod 5)$
or $-4 \equiv 2-1(\bmod 5)$
Finally $16 \times 12 \equiv(2 \times 1)(\bmod 5)$
$192 \equiv 2(\bmod 5)$
$190 \equiv 0(\bmod 5)$ TRUE
5) $27 \equiv 6(\bmod 7)$
$(3 \times 9) \equiv(3 \times 2)(\bmod 7)$
now hcf $(3,7)=1$
so we can divide by 3
$9 \equiv 2(\bmod 7)$
$7 \equiv 0(\bmod 7)$ TRUE by corollary 2
6) For natural numbers $2,3,4,5,6, \ldots 21$
if we define $a b \equiv I(\bmod 23)$ then
$2 \times 12 \equiv 1(\bmod 23)$
$3 \times 8 \equiv 1(\bmod 23)$
$4 \times 6 \equiv 1(\bmod 23)$
$5 \times 14 \equiv 1(\bmod 23)$
$7 \times 10 \equiv 1(\bmod 23)$
$9 \times 18 \equiv 1(\bmod 23)$
$1 \mid \times 2 I \equiv I(\bmod 23)$
$13 \times 16 \equiv 1(\bmod 23)$
$15 \times 20 \equiv 1(\bmod 23)$
$17 \times 19 \equiv 1(\bmod 23)$
but I am not clear why this holds !
7) solve $23 x \equiv 17(\bmod 7)$
we know $21 x \equiv 7(\bmod 7)$ for any x
therefore we reduce $23 x \equiv 17(\bmod 7)$
to $2 x+21 x \equiv(10+7)(\bmod 7)$
By converse theorem I

$$
\begin{aligned}
& 2 x \equiv 10(\bmod 7) \\
& 2 x=10 \text { by corollary } 2 \\
& x=5
\end{aligned}
$$

8) $917 x \equiv 33(\bmod 13)$
$(910 x+7 x) \equiv(20+13)(\bmod 13)$
now $910 x \equiv 13(\bmod 13)$ for any x

$$
7 x \equiv 20(\bmod 13)
$$

Hence $7 x \equiv 7(\bmod 13)$
so $7 x=7$
and $x+I$ which is in fact TRUE
9) Solve $3 x \equiv 1(\bmod 7)$
now hcf $(3,7)=1$
so we have one solution
now $I \equiv-6(\bmod 7)$ so by Theorem 4 $3 x \equiv-6(\bmod 7)$
and again because hcf $(3,7)=1$
we can divide through by 3

$$
x=-2(\bmod 7)
$$

so $x=-2+7 k$
$x=5$ the principle solution
$10)$ solve $18 x \equiv-76(\bmod 29)$

$$
\text { hcf }(18,29)=1
$$

so we have one solution
By Theorem 5 as hcf $(2,29)=1$
we can divide by 2 hence $9 x \equiv-38(\bmod 29)$
$9 x \equiv-38(\bmod 29)$
$9 x \equiv-9(\bmod 29)$
As hcf $(9,29)=1$ we can divide by 9
$x \equiv-1(\bmod 29)$
$x \equiv 28(\bmod 29)$
By corollary $2 x=28$
check $18 \times 28+76 \equiv 0(\bmod 29)$

Available in this series are

- On My TI Calculator what's the difference between Sx and σx ? It's not what I thought for the first 40 years of the scientific calculator
- Beyond Pascal - Multinomials and Dice Throwing How a class exercise in dice throwing led to the discovery of multinomials
- Conditional Probability and Bayes Theorem

An investigation into the pitfalls of medical screening

- Hypercomplex Numbers

Instead of making $\mathrm{i}^{2}=-\mathrm{I}$ as in complex numbers what if we just make $\mathrm{i}^{2}=\mathrm{I}$

- Propositional Calculus

Sherlock Holmes was the great inductive detective but not infallible

- The Harmonic Triangle

How investigating harmonic triangles led to the discovery of a universal series summation formula

- Congruencies

A concise frills-free summary of the major theorems with comprehensible proofs.

- Pentatope Numbers

A short paper demonstrating a serendipitous discovery.

Back page

