An Investigation into Perpendicular Distances using TI-83

Summary

This is an investigation into the perpendicular distance from a given point to a given line. There is a proof by induction of the given formula notoriously difficult to derive algebraically - by demonstrating it is invariant to translations.

Introduction

TI-83 set Zoom/ZStandard and enter
$-10,-15,1,-10,15,1,1$
Then Zoom / 5:ZSquare
Go back to Window and observe the TI-83 rounds these values to give a square graph grid.

Enter $\mathrm{YI}=4 / 3 \mathrm{x}+8$
We will examine the perpendicular distance from point PI (7,9). These values have been carefully chosen to ensure all subsequent calculations are in integers.

Now we determine a line perpendicular to YI passing through PI given by
$y-y_{1}=m\left(x-x_{1}\right)$
$y-9=-3 / 4(x-7)$
because perpendiculars $m_{1} \times m_{2}={ }^{-}$I
Therefore enter $\mathrm{Y} 2={ }^{-3} / 4 \mathrm{x}+{ }^{57} /$

Graph YI and Y2 and observe perpendicular

We can find the point of intersection directly. Enter $2^{\text {nd }}$ CALC 5:intersect

Enter, Enter, Enter to get $x=3 y=12(3,12)$
Algebraically you can deduce this by equating y values to determine x and then substituting back into YI.

Distance $\mathrm{PI}(7,9)$ to $\mathrm{P} 2(3,12)$ is
$d^{2}=(7-3)^{2}+(9-12)^{2}$
$\mathrm{d}=5$ (rigged to be a 3,4,5 triangle)
Now we translate YI, Y2, PI and P2
by vector $\left[\begin{array}{ll}-3 & \\ -12\end{array}\right]$
$Y I \Rightarrow y+12=4 / 3(x+3)+8$
Enter $\mathrm{Y} 3=4 / 3 \mathrm{x}$
(again the values were rigged to produce a line that passes through $(0,0)$
$\left.\mathrm{PI} \Rightarrow \mathrm{P} 3(7,9)+{ }^{-3}{ }_{-12}\right]=(4,-3)$
$P 2 \Rightarrow P 4(3,12)+\left[^{-3}{ }_{-12}\right]=(0,0)$
and for completeness
Enter Y4 $=-3 / 4 \mathrm{x}$
So now we have Y 3 and Y 4 intersecting at $(0,0)$ and
distance P3 (4, - 3) to P4 (0, 0)
$\mathrm{d}^{2}=(4-0)^{2}+(-3-0)^{2}$
$\mathrm{d}=5$ as before and as expected

Summary to Date

We took a line YI and a point PI and calculated the perpendicular distance " 5 " We then translated the line and point a predetermined distance to produce an intersection at $(0,0)$ checking the perpendicular distance was identical as expected. So the distance is invariant to the translation because we're translating a rigid body or network.

In principle if we could easily determine [$\left.\begin{array}{l}i_{k} \\ k\end{array}\right]$ the calculation simplifies to $d^{2}=\left(x_{1}+j\right)^{2}+\left(y_{1}+k\right)^{2}$

Repeat Algebraically but in reverse

Start with line $Y 3=P /{ }_{q} x$ and
point P3
The line from P3 to $(0,0)$ will be
perpendicular to $Y 3$ because $m_{1} \times m_{2}=-I$
$d^{2}=(p)^{2}+\left({ }^{-} q\right)^{2}$
Now apply vector $\left[\begin{array}{l}i_{k} \\ k\end{array}\right]$ to Y 3 and P3

$$
\begin{aligned}
& y-k=P / q(x-j) \\
& y=P / q(x-j)+k \text { ie YI }
\end{aligned}
$$

and $P 3 \Rightarrow\left(p+j,{ }^{-} q+k\right)$
$(0,0) \Rightarrow(j, k)$ which is on $\mathrm{Y} I$
So perpendicular distance between
$\left(p+j,{ }^{-} q+k\right)$ and (j, k) is
$\left.d^{2}=(p+j-j)^{2}+\left({ }^{-} q+k-k\right)^{2}\right)$
$d=\sqrt{ }\left(p^{2}+q^{2}\right)$
as expected.
In short the perpendicular distance d is invariant to the applied vector [${ }_{i}^{i}$] $]$ to Y3 and P3.

Proof of Formula

Formula is $\left\{a x_{1}+b y_{1}+c\right\} / \sqrt{ }\left(a^{2}+b^{2}\right)$
For $y=P / q$ and point ($p,-q$)
$d=p \times p+(-q) \times(-q) / \sqrt{ }\left\{p^{2}+\left(q^{2}\right)\right\}$
$=\left(p^{2}+q^{2}\right) / \sqrt{ }\left(p^{2}+q^{2}\right)$
$=\sqrt{ }\left(p^{2}+q^{2}\right)$
We can now show the formula to be true
if invariant to vector [$\left.\begin{array}{l}i \\ k\end{array}\right]$
so $a x+b y+c \Rightarrow p(x-j)-q y+k q$
ie $p x-q y+k q-p j=0$
and point is $(p+j, k-q)$
Substituting all values from the formula
$d=\{p(p+j)-q(k-q)+k q-p j\}$

$$
\div \sqrt{ }\left\{(p)^{2}+\left({ }^{-} q\right)^{2}\right\}
$$

$=\left\{p^{2}+p j-q k+q^{2}+k q-p j\right\}$

$$
\div \sqrt{ }\left\{p^{2}+q^{2}\right\}
$$

$=\left\{p^{2}+q^{2}\right\} / \sqrt{ }\left\{p^{2}+q^{2}\right\}$
$=\sqrt{ }\left\{p^{2}+q^{2}\right\}$
which is what we set out to establish.

Conclusion

We establish that
$a x_{1}+b y_{1}+c / \sqrt{ }\left(a^{2}+b^{2}\right)$
gives the correct answer in the simplest case when the line is

$$
\begin{aligned}
y & =P / q \text { and point }(p,-q) \\
\text { ie } \quad d & =\sqrt{ }\left\{p^{2}+q^{2}\right\}
\end{aligned}
$$

We then translate the line and point by any arbitrary vector [$\left[\begin{array}{l}i_{k} \\ k\end{array}\right]$ and determine that the formula gives the same answer

$$
d=\sqrt{ }\left\{p^{2}+q^{2}\right\}
$$

Hence by induction the formula is correct.

Addendum

If you search the internet you can find about 7 proofs of the formula
$\left\{a x_{1}+b y_{1}+c\right\} / \sqrt{ }\left(a^{2}+b^{2}\right)$
all reasonably incomprehensible and totally non intuitive. The formula "looks" correct but emerges like a rabbit out the hat. Then I found a proof in "Elementary Calculus and Coordinate Geometry" by C G Nobbs which absolutely nails it.

Let the coordinates of point P be (x_{1}, y_{1}) and the perpendicular to line $a x+b y+c=0$ be PN.

Let the directive angle PN be " α " and the length to be found "d".

Coordinates N are then
$\left(x_{1}+d \cos \alpha, y_{1}+d \sin \alpha\right)$
However this point lies on
$a x+b y+c=0$
so we can substitute values for x and y.

$$
a\left(x_{1}+d \cos \alpha x\right)+b\left(y_{1}+d \sin \alpha\right)+c
$$

$$
=0
$$

which we can rearrange to give
$d(a \cos \alpha+b \sin \alpha)={ }^{-}\left(a x_{1}+b y_{1}+c\right)$
Gradient line is $-\mathrm{a} / \mathrm{b}$ so gradient $\mathrm{PN}=\mathrm{b} / \mathrm{a}$ and $\mathrm{b} / \mathrm{a}=\tan \alpha$
so $\quad \sin \alpha=b / \sqrt{ }\left(a^{2}+b^{2}\right)$ and
$\cos \alpha=a / \sqrt{ }\left(a^{2}+b^{2}\right)$
so d $\left\{a^{2} / \sqrt{ }\left(a^{2}+b^{2}\right)+b^{2} / \sqrt{ }\left(a^{2}+b^{2}\right)\right\}$

$$
={ }^{-}\left(a x_{1}+b y_{1}+c\right)
$$

Hence $d \sqrt{ }\left(a^{2}+b^{2}\right)={ }^{-}\left(a x_{1}+b y_{1}+c\right)$
so $d={ }^{-}\left(a x_{1}+b y_{1}+c\right) / \sqrt{ }\left(a^{2}+b^{2}\right)$
which is an intuitive process.

Investigation

Investigate the perpendicular distance from (5,2) to $y={ }_{4}^{-3 /} x+12$ from first principles and using the formula.

Verify the answer from the formula is indeed ${ }^{-5}$ (negative 5)

Explanation

If we'd taken coordinates N as
($\left.x_{1}-d \cos \alpha, y_{1}-d \sin \alpha\right)$ the formula gives a positive answer. Strictly it's \pm and we take the modulus.

Perpendicular Form of a Line

This form can be extended. Take a line from the origin $0(0,0)$ to point P on any line and perpendicular to it.

The coordinates P are $(p \cos \alpha \cdot p \sin \alpha)$ and the gradient is $\tan \alpha$

Therefore gradient line is ${ }^{-} \operatorname{cotan} \alpha$ So given a point and a gradient we derive
$(y-p \sin \alpha)={ }^{-} \operatorname{cotan} \alpha(x-p \sin \alpha)$
Multiplying through by $\sin \alpha$ and rearranging
$y \sin \alpha=p\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)-x \cos \alpha$
$x \cos \alpha+y \sin \alpha=p$
This is called the perpendicular form of the equation of the line
org

