An Investigation into Perpendicular Distances using TI-83

Summary

This is an investigation into the perpendicular distance from a given point to a given line. There is a proof by induction of the given formula – notoriously difficult to derive algebraically – by demonstrating it is invariant to translations.

Introduction

TI-83 set Zoom/ZStandard and enter -10, -15, 1, -10, 15, 1, 1Then Zoom / 5:ZSquare Go back to Window and observe the TI-83 rounds these values to give a square graph grid. Enter YI = $\frac{4}{3}x + 8$ We will examine the perpendicular distance from point PI (7,9). These values have been carefully chosen to ensure all subsequent calculations are in integers. Now we determine a line perpendicular

to YI passing through PI given by

$$y - y_{1} = m (x - x_{1})$$

$$y - 9 = -\frac{3}{4} (x - 7)$$
because perpendiculars m₁× m₂ = -1
Therefore enter Y2 = -\frac{3}{4} x + \frac{57}{4}

Graph YI and Y2 and observe perpendicular We can find the point of intersection directly. Enter 2nd CALC 5:intersect Enter, Enter, Enter to get x=3 y=12 (3,12) Algebraically you can deduce this by equating y values to determine x and then substituting back into Y1. Distance PI (7, 9) to P2 (3, 12) is $d^2 = (7 - 3)^2 + (9 - 12)^2$ d = 5 (rigged to be a 3,4,5 triangle) Now we translate YI, Y2, PI and P2 by vector $\begin{bmatrix} -3 \\ -12 \end{bmatrix}$ $YI \implies y + 12 = \frac{4}{3}(x + 3) + 8$ Enter Y3 = $\frac{4}{3}$ x (again the values were rigged to produce a line that passes through (0,0) $PI \implies P3(7,9) + [^{-3}_{-12}] = (4,^{-3})$ $P2 \Rightarrow P4(3, 12) + [^{-3}_{-12}] = (0, 0)$ and for completeness Enter Y4 = $-\frac{3}{4}$ x So now we have Y3 and Y4 intersecting at (0, 0) and distance P3 (4, -3) to P4 (0, 0) $d^2 = (4 - 0)^2 + (-3 - 0)^2$ d = 5 as before and as expected

Summary to Date

We took a line YI and a point PI and calculated the perpendicular distance "5" We then translated the line and point a predetermined distance to produce an intersection at (0, 0) checking the perpendicular distance was identical as expected. So the distance is invariant to the translation because we're translating a rigid body or network.

In principle if we could easily determine

 $\begin{bmatrix} j_k \end{bmatrix}$ the calculation simplifies to

 $d^2 = (x_1 + j)^2 + (y_1 + k)^2$

Repeat Algebraically but in reverse

Start with line $Y3 = P/_{d}x$ and

point P3

The line from P3 to (0,0) will be perpendicular to Y3 because $m_1 \times m_2 = {}^{-}I$ $d^2 = (p)^2 + ({}^{-}q)^2$

Now apply vector $\begin{bmatrix} j_k \end{bmatrix}$ to Y3 and P3

 $y - k = \frac{p}{q} (x - j)$ $y = \frac{p}{q} (x - j) + k \text{ ie } YI$

and P3 \Rightarrow (p + j , \bar{q} + k)

(0 , 0) \Rightarrow (j , k) which is on YI

So perpendicular distance between

$$(p + j, -q + k)$$
 and (j, k) is
 $d^2 = (p + j - j)^2 + (-q + k - k)^2)$
 $d = \sqrt{(p^2 + q^2)}$

as expected.

In short the perpendicular distance d is invariant to the applied vector $[j_k]$ to Y3 and P3.

Proof of Formula

Formula is { $ax_1 + by_1 + c$ } / $\sqrt{(a^2 + b^2)}$ For $y = \frac{p}{a} \times and point (p, q)$ $d = p \times p + (-q) \times (^{-}q) / \sqrt{\{p^{2} + (^{-}q^{2})\}}$ $= (p^2 + q^2) / \sqrt{(p^2 + q^2)}$ $= \sqrt{(p^2 + q^2)}$ We can now show the formula to be true if invariant to vector $\begin{bmatrix} j \\ k \end{bmatrix}$ so ax + by + c \Rightarrow p(x - j) - qy + kq ie px - qy + kq - pj = 0and point is (p + j, k - q)Substituting all values from the formula $d = \{ p (p + j) - q (k - q) + kq - pj \}$ $\div \sqrt{\{(p)^2 + (-q)^2\}}$ $= \{ p^2 + pj - qk + q^2 + kq - pj \}$ $\div \sqrt{\{p^2 + q^2\}}$ $= \{ p^{2} + q^{2} \} / \sqrt{\{ p^{2} + q^{2} \}}$ $= \sqrt{\{p^2 + q^2\}}$ which is what we set out to establish.

Conclusion

ie

We establish that

 $ax_1 + by_1 + c / \sqrt{(a^2 + b^2)}$

gives the correct answer in the simplest case when the line is

y =
$$p/q$$
 and point (p, \bar{q})
d = $\sqrt{\{p^2 + q^2\}}$

We then translate the line and point by any arbitrary vector $\begin{bmatrix} j_k \end{bmatrix}$ and determine that the formula gives the same answer

$$d = \sqrt{\{p^2 + q^2\}}$$

Hence by induction the formula is correct.

Addendum

If you search the internet you can find about 7 proofs of the formula $\{ax_1 + by_1 + c\} / \sqrt{(a^2 + b^2)}$ all reasonably incomprehensible and totally non intuitive. The formula "looks" correct but emerges like a rabbit out the hat. Then I found a proof in "Elementary Calculus and Coordinate Geometry" by C G Nobbs which absolutely nails it. Let the coordinates of point P be (x_1, y_1) and the perpendicular to line ax + by + c = 0 be PN. Let the directive angle PN be " α " and the length to be found "d". Coordinates N are then $(x_1 + d \cos \alpha, y_1 + d \sin \alpha)$ However this point lies on ax + by + c = 0so we can substitute values for x and y. a $(x_1 + d \cos \alpha x) + b (y_1 + d \sin \alpha) + c$ = 0which we can rearrange to give d (a cos α + b sin α) = $(ax_1 + by_1 + c)$

Gradient line is ${}^{-a}/{}_{b}$ so gradient PN = ${}^{b}/{}_{a}$ and ${}^{b}/{}_{a}$ = tan α so sin α = b / $\sqrt{(a^{2} + b^{2})}$ and cos α = a / $\sqrt{(a^{2} + b^{2})}$

so d { $a^2 / \sqrt{(a^2 + b^2) + b^2 / \sqrt{(a^2 + b^2)}}$ = -($ax_1 + by_1 + c$) Hence d $\sqrt{(a^2 + b^2)}$ = -($ax_1 + by_1 + c$)

so d = $(ax_1 + by_1 + c) / \sqrt{(a^2 + b^2)}$

Investigation

Investigate the perpendicular distance from (5,2) to $y = {}^{-3/}_4 x + 12$ from first principles and using the formula. Verify the answer from the formula is indeed ${}^{-5}$ (negative 5)

Explanation

If we'd taken coordinates N as ($x_1 - d \cos \alpha$, $y_1 - d \sin \alpha$) the formula gives a positive answer. Strictly it's \pm and we take the modulus.

Perpendicular Form of a Line

This form can be extended. Take a line from the origin 0 (0, 0) to point P on any line and perpendicular to it.

The coordinates P are (pcos α . p sin α) and the gradient is tan α

Therefore gradient line is $\bar{}$ cotan lpha

So given a point and a gradient we derive

 $(y - p \sin \alpha) = \cot \alpha (x - p \sin \alpha)$

Multiplying through by sin $\boldsymbol{\alpha}$ and

rearranging

y sin α = p (cos² α + sin² α) - x cos α x cos α + y sin α = p

This is called the perpendicular form of the equation of the line

юrg

which is an intuitive process.