We have $\cos 2\theta = 1 - 2\sin^2\theta$ $= 2\sin^2\theta - 1$ $=\cos^2\theta - \sin^2\theta$ but only $\sin 2\theta = = \cos^2\theta - \sin^2\theta$ $\sin 2\theta = = -2 \sin \theta \cos \theta$ This is a specific of the power series where we can express cosⁿ in cosines (n odd or even) sinⁿ in cosines (n even) sinⁿ in sines (n odd) but **not** cosⁿ in sines (n odd or even) sinⁿ in sines (n even) sinⁿ in cosines (n odd) The same asymmetry is reflected in all hyperbolic relationships. It also surfaces in the seemingly innocuous if $\sinh x = \tan y$ $\cosh x = \sec y$ tanh x = sin yWhy does the cosh invert? Because we already know $\cosh x = \cos ix$ and the introduction of i gives the clue to the asymmetry.

We have to move everything into the complex plane to see the full picture Circular functions have period 2π Hyperbolic functions have period $2i\pi$ In establishing our sin cos relationships we allocate sine to the IMAGINARY (the y) axis. Now $e^{ix} = \cos x + i \sin x$ let x = 2A $e^{i2A} = \cos 2A + i \sin 2A$ but $e^{i2A} = e^{iA} \times e^{iA}$ $= (\cos A + i \sin A)^{2}$ Thus we multiply out and equate real and imaginary parts to reveal $\cos 2A = \cos^2 A - \sin^2 A$ which we manipulate to produce the other two but Sin2A = 2 sin A cos Awhich we're stuck with. As we have $\cos ix = \cos x$ $\sinh ix = i \sin x$ and whenever we square up the i sin function the i disappears to give us - sinwhich is Osborne's rule. юrg