There are 3 Cosine Double Angle Formulae but only one Sine? Why?

We have

$$
\begin{aligned}
\cos 2 \theta & =1-2 \sin ^{2} \theta \\
& =2 \sin ^{2} \theta-1 \\
& =\cos ^{2} \theta-\sin ^{2} \theta
\end{aligned}
$$

but only
$\sin 2 \theta==\cos ^{2} \theta-\sin ^{2} \theta$
$\sin 2 \theta==-2 \sin \theta \cos \theta$
This is a specific of the power series
where we can express
$\cos ^{n}$ in cosines (n odd or even)
$\sin ^{n}$ in cosines (n even)
$\sin ^{\mathrm{n}}$ in sines (n odd)
but not
$\cos ^{n}$ in sines (n odd or even)
$\sin ^{n}$ in sines (n even)
$\sin ^{n}$ in cosines (n odd)
The same asymmetry is reflected in all hyperbolic relationships. It also surfaces in
the seemingly innocuous
if $\quad \sinh x=\tan y$
$\cosh x=\sec y$
$\tanh x=\sin y$
Why does the cosh invert?
Because we already know
$\cosh \mathrm{x}=\cos \mathrm{ix}$
and the introduction of i gives the clue to the asymmetry.

We have to move everything into the complex plane to see the full picture Circular functions have period 2π Hyperbolic functions have period $2 \mathrm{i} \pi$ In establishing our sin cos relationships we allocate sine to the IMAGINARY (the y) axis.

Now $e^{i x}=\cos x+i \sin x$
let $x=2 A$
$e^{i 2 A}=\cos 2 A+i \sin 2 A$
but $e^{i 2 A}=e^{i A} \times e^{i A}$

$$
=(\cos A+i \sin A)^{2}
$$

Thus we multiply out and equate real and imaginary parts to reveal
$\cos 2 A=\cos ^{2} A-\sin ^{2} A$
which we manipulate to produce the other two but
$\sin 2 A=2 \sin A \cos A$
which we're stuck with.
As we have $\cos \mathrm{ix}=\cos x$

$$
\sinh i x=i \sin x
$$

and whenever we square up the i sin function the i disappears to give us - sin which is Osborne's rule.
prg

