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Introduction 

For summer 2010 I was seeking a 

suitable PDP topic.  At the TSI summer 

school where I worked this year, 

students were free to choose a 

collective topic for lecture and 

investigation on the final day each 

week.  Students were aged around 14 – 

17 and preparing for GCSE final year.  

In the third week, students were 

adamant they wished to investigate 

matrices, having heard the topic but 

with no direct experience of them. 

Studying textbooks, I realised at “A” 

level, matrices are only covered in FP3 

with little explanation as to their 

properties and applications. IB Standard 

level covers a good introduction to 

matrices but then seems to digress into 

a lot of pointless “algebraic” 

manipulation without pursuing any 

higher level features that make matrices 

so important in engineering and physics. 

I therefore designed and delivered a 

two hour “accessible”course which 

covered the basic features of matrices 

plus an explanation of their application 

in solving linear equations and their 

properties when viewed as 

transformation operators. 

However I then realised my own 

appreciation and understanding of 

aspects such as eigenvalues and 

eigenvectors were purely procedural 

and decided to investigate these 

further.  

I discovered there were no reliable TI-

83 programs available on the internet 

to calculate eigenvalues and associated 

eigenvectors of an n×n matrix.  There 

were a few limited applications available 

for 2×2 and 3×3 matrices. 

An eigvl() function is available on the 

TI-nspire calculator but it appears to 

use a “trial and improvement” 

procedure and gave me no insight into 

the nature of eigenvalues and 

eigenvectors. 

Investigating the mathematics 

underpinning eigenvalues and 

eigenvectors enabled me to write an 

algorithm covering any size square 

matrix.  It further led me to the 

discovery an appreciation of 

exponential matrices.   

Robert Goodhand 



Mathematical Summary 

Eigenvectors 

If a square matrix [ D ] turns matrix v 

into a numerical multiple of itself then v 

is said to be an eigenvector of [ D ] 

with eigenvalue . 

Eigenvectors correspond physically to a 

quantum state in which measuring an 

observable quantity [ D ] will with 

certainty give a result . 

So we have  D v = v   where 

 is a scalar quantity. 

P() is the characteristic polynomial 

and setting P() = 0 gives us an nth 

order polynomial in  termed the 

“characteristic equation”.  The set of 

solutions are the eigenvalues. 

The formal determination for any size 

square matrix is (starting with) 

D v = v 

Then to transform the scalar quantity  

into a vector by × by the identity 

matrix I 

D v  = I v 

So   ( D – I ) v = 0 

( D – I ) is termed the “coefficient 

matrix”.  We have, I effect produced a 

new matrix by deducting  from the 

diagonal of the original matrix. 

We then determine the characteristic 

equation by setting 

det ( D–I ) = 0. 

A quick way to determine eigenvalues 

for a 2×2 matrix is to use the product 

and sum relationships for the 

eigenvalues. 

1 × 2  = det   [ D ] say  

1  + 1  = trace [ D ] say  

which immediately gives the 

characteristic equation 

 2 + –() + ( + ) = 0 

To determine matrix [ D ] 

Step 1 

Suppose I postulate any three 

eigenvalues  1 = 2  2 = 4  3 = 5 

I enter these into a 3×3 diagonal matrix 

[ B ], the diagonal being 1 2 3.  

Step 2 

Next I specify three arbitrary 

eigenvectors as column vectors v. 

 2 4 5 



v 3 –2 4 

 1 1 2 

 2 4 3 

I enter these as the columns of a 3×3 

matrix [ A ] 

Step 3 

I determine  [ A ]–1   [ C ] 

Step 4 

Now I determine matrix [ D ] from the 

relationship 

  [ D ] = [ P ] [ J ] [ P ]–1 

ie Matrix D with det[ D ]  0 can be 

diagonalised into Jordan form [ J ] via a 

partner matrix [ P ]. 

So I enter [ P ] [  J  ] [ P ]–1 [ D ] 

So starting with an arbitrary diagonal 

matrix [ J ], I have determined a matrix 

[ D ] that could be reduced to that 

diagonal form through another 

arbitrary partner matrix. 

The elements of [ D ] are  

 –0.2 21.8 –7.6 

 –1.6 12.4 –2.9 

 –2.9 15.1 –1.2 

(all to 1 dp) and I retain these in [ D ] 

for use later. 

To determine Eigenvalues and E-

vectors 

Step 1 

Enter into the TI–83 graph plotter 

Y1 = det[ D ] – X×identity(3) 

This deducts the as yet unknown 

eigenvalue  from the matrix diagonal. 

Studying the graph, I identify the x–

intersects 2, 4 and 5, as expected. 

Step 2 

Taking  = 2 enter  ref [ D ] – 2 × 

identity (3)  [ E ] 

This deducts the known eigenvalue  

 = 2 from the diagonal of a Gaussian 

reduction of the coefficient matrix by 

using the TI–83 row echelon form 

function. 

Row 3 is zeros because there are 

infinitely many eigenvectors for this 

eigenvalue. 

Step 3 

I redimension [ E ] to an augmented 

3×4 matrix, which adds a final column 

of zeros. 

I now have a matrix [ E ] representing a 

set of linear equations that can be 

solved directly. 



Step 4 

I open Polysmlt Simultaneous equations 

and set dimensions to 4 × 4. 

There appears to be a “bug” in Polysmlt, 

which deletes the final row when loading a 

matrix direct. 

I load [ E ] and solve to get  

  x1 = 1.5x3 

   x2 = 0.5x3 

   x3 = x3 

      3 

which matches the arbitrary column 

matrix eigenvector  1  originally chosen 

as the lowest integer solution.   2 

I can then repeat this process for  = 4 

and  = 5 

Stage 4 Diagonalising Matrices, 

Eigenvalues and Eigenvectors 

In the procedure for diagonalising any 

matrix [ D ] we seek to determine a 

partner matrix P and its inverse P–1 

such that 

 [ D ] = [ P ] × [ J ] × [ P ]–1 

It can be shown that  

1) the elements of diagonalised 

matrix (Jordan form) [ J ] are 

the eigenvalues of [ D ] and  

2) the columns of partner 

matrix [ P ] are the 

associated eigenvectors.  

which was an unexpected relationship 

and a serendipitous discovery for me. 

If we wish to rearrange  

[ D ]  = [ P ] × [  J  ] × 

[ P ]–1 then we must proceed 

carefully 

[ P ]–1 × [ D ] × [ P ]   = [ P ]–1 

× [ P ] × [  J  ] × [ P ]–1 × [ P ] 

so          [ J ]    = [ P ]–1 × [ D ] 

× [ P ] 

Many websites get this back-to-front 

probably because the authors, while 

appreciating that you cannot rearrange 

matrix equations as if they were algebraic 

equations, then incorrectly assume that 

because [ P ]–1 and [ P ] are commutative 

they can be reversed with impunity!  



Extension Investigation - 

Exponential Matrices 

If we define for matrix [ D ] 

e[ D ] = I +[ D ] + [ D ]2 × (1/2!) 

+ [ D ]3 × (1/3!) … 

where I is the identity matrix, it can be 

shown that 

e[ D ] + [ E ] =e [ D ] × e[ E ] 

providing [ D ] × [ E ] = [ E ] × [ D ]  

The converse does not always hold, so this 

is not a “necessary condition”. 

If [ J ] is any diagonal matrix then it is 

easy to demonstrate that [ e[ J ] ] is 

given by substituting each element “a” 

with “ea”. 

This means that if we can successfully 

diagonalise the matrix [ D ] such that 

[ J ] = [ P ]–1 × [ D ] × [ P ] 

then as previously demonstrated 

[ D ] = [ P ] × [ J ] × [ P ] –1 

so a[ D ] = [ P ] × [ J ] × [ P ] –1 [ P ] × [ J 

] × [ P ] –1 … [ P ] × [ J ] × [ P ] –1   

(“a” times)and eliminating “a” lots of [ P 

] –1 [ P ] and extending from “a” to “e”, 

we get 

e[ D ] = [ P ] × [ e[ J ] ] × [ P ]–1  

(again many websites get this back–to–

front) 

Finally it can be shown that  

det [ e[ D ] ] = e trace [ D ]    

a most esoteric and relatively unknown 

identity. 

I wrote a TI-83 program to calculate [ 

e[ D ] ] from the infinite series, pursuing 

terms until the next term made less 

than a predetermined absolute 

difference in the trace of [ e[ D ] ] 

calculated to that point.  The 

relationship det [ e[ D ] ] = e trace [ D ] was 

then confirmed numerically. 

 


