
The End of Mathematics 

It’s always exciting to read about the latest 

developments in Medicine or Physics but 

does anyone think the same happens in 

Mathematics.  I suspect the majority think 

the whole subject was pretty well 

wrapped up by the ancient Greeks – most 

of the IGCSE textbooks would be 

comprehensible to an educated time-

travelling Grecian 

But take our two main Mathematical 

syllabuses here at Taunton School.  We 

could be teaching “A” level Mathematics in 

D1 and in Standard Level IB next door in 

D2.  Think of the simplest concept – the 

set N of counting numbers.  Does that 

include “zero”?  Well it’s “No” if you’re 

studying “A” level and “Yes” if your 

studying IB.  That’s because the two are 

built on different axiomatic systems – the 

assumed unprovable truths.   

For “A” level, it’s Peano’s axioms – the 

first one stating, “one is the lowest 

number” and the next three constructing 

the counting numbers.  IB is built on set 

theory, with the second axiom (not even 

the first) being “There is a null set”. That’s 

{} or .  So how many sets have we now 

got? Answer “one” and we’re off first base 

with the counting numbers out of thin air. 

Peanos axioms are self evident, up to the 

fifth, when we get the axiom of induction.  

It’s the axiom we use in those questions 

when we’re given the answer and then 

asked to prove it.  To me it always 

seemed to be a bit of a cheat.  I mean if 

we have to be given the answer to start 

with – what’s the point?  Where did the 

answer come from?  At university, when I 

was first shown how to solve differential 

equations, the lecturer said “Let’s assume 

the solution is in the form Ae–bx ”. So 

where did that come from?  Later we 

were introduced to integrating factors but 

they also seemed to materialise out of 

nowhere.  And so it goes on with 

summing series and many other areas. 

At the turn of the twentieth century, set 

theory seemed to offer a whole new 

approach to mathematics – a new 

foundation based on more powerful if less 

intuitive axioms. However as Gottlob 

Frege was putting the final touches to a 



three-volume work, Bertrand Russell sent 

him a paradox of set theory – to do with 

sets being members of themselves.  Frege 

wrote as an introduction to Volume 3 

almost as it rolled off the press “A 

scientist can hardly meet with anything 

more undesirable than to have the 

foundation give way just as the work is 

finished.”  

Maybe Russell felt guilty because he and 

Whitehead then embarked on a 

monumental work “Principia 

Mathematica” in an attempt to prop up 

the increasingly shaky structure of Set 

Theory.  It was heavy going and took 362 

pages before they managed to prove 

1+1=2 (this is not a joke). As at today we 

take the modified axioms of Zermelo-

Fraenkel as our foundation. There is even 

a specific axiom, the axiom of regularity 

that disallows sets being members of 

themselves, the cause of the original 

problem.  

But then there is that tricky Axiom of 

Choice (AC).  Take set A consisting of 

three objects {a,b,c}, set B consisting of 

{d,e,f) and set C consisting of {g,h,j).  The 

axiom of choice says we can form a new 

different set D by choosing an element 

from each of the three sets.  Say D = 

{a,d,g}.  There is no way to derive this 

self-evident fact from the other axioms.  

The main problem is the axiom of choice 

doesn’t tell us how to choose the 

elements so many mathematicians try and 

work without it. Two in particular, Tarski 

and Banach wanted to banish it altogether.  

Their best attempt was to assume it true 

and then they set out to prove the most 

ridiculous thing they could – which was 

that if you cut up an orange into six (some 

say seven) pieces, you can rearrange the 

pieces and re-assemble them into an 

orange twice as big – with no gaps!  

Unfortunately the message the rest of the 

(mathematical) world got was – “wow, 

isn’t maths amazing” and we carry on 

using the axiom of choice whenever 

necessary. 

Having said all that, no one in practical 

everyday mathematics ever pays any of 

this the slightest notice though some 

issues are touched upon in Higher Level IB 

(eg proving two sets are equal) 

Mathematicians are supposed to fall into 

different camps.  First we have the 



logicists led by Frege and Russell who 

ultimately decamped.  The latter 

eventually wrote in “Portraits from 

Memory” “Having constructed an elephant 

upon which the mathematical world would 

rest, I found the elephant tottering and 

proceeded to construct a tortoise to keep 

the elephant from falling.  But the tortoise 

was no more secure than the elephant.” 

Then there are the constructivists led by 

Brouwer. He starts with the natural 

numbers as “fundamental intuition” and 

everything from thereon has to be 

constructed.  The problem is 

constructivist mathematicians are 

prevented from using some of the 

everyday tools as a sort of “matter of 

principle”.  For example there is the law 

of trichotomy – “every real number is 

either positive negative or zero”.  No one 

would argue with that and it can be 

proved if the numbers are constructed 

set-theoretically.  Not so for the 

constructivists who reject it.  This is 

because the proof depends upon “proof 

by contradiction” which itself rests upon 

the law of the excluded middle.  I’d have 

to say I’ve never met a constructivist – I 

think they are as rare as solipsists (though 

I am one of the latter). 

Then among others there are the 

formalists, started by David Hilbert at the 

turn of the century.  He put out a 

challenge to base mathematics on a 

complete and consistent set of axioms 

from which all truths could be 

automatically derived by following the 

rules.  It would be like turning the handle 

of the machine in Swift’s island of Laputa – 

whereby all works could ultimately be 

written by assembling the random lists of 

words produced. 

Gödel put paid to that in 1931 with an 

amazing paper now termed the 

incompleteness theorem.  The bottom 

line developed further by the British 

mathematician Alan Turing was that 

mathematics could never be both 

consistent and complete.  

Imagine students attending the EFL.  They 

are there to learn more fluent English.  

And what language do we use to achieve 

that?  Why English! This is because the 

language itself and the individual’s 

comprehension of the language exceeds 



some undefined critical mass such that 

English can be used to talk about itself 

meaningfully. 

Now Gödel similarly proved that any 

sufficiently powerful axiomatic system 

could also talk about itself in the language 

of the system.  Further no matter how 

many axioms are used as the foundation, it 

is possible to construct from those axioms 

a further statement that can be neither 

proved nor disproved within the system.  

This must then be appended as a further 

axiom and so the process continues. 

Here’s a flavour how he did it.  He used 

“numbers” in a one-to-one 

correspondence with mathematical 

symbols so a number itself say 

346,453,542,675,892 (I’m just making this 

number up) might be translated into some 

mathematical theorem, line by line, where 

the commas indicate a new line.  The first 

really clever bit was working out a 

method so that part of the number say the 

“542” bit was an encoding of the whole 

number.  There was a further clever bit 

using Cantor’s diagonal argument. And the 

whole number said mathematically “This 

statement can not be proved within the 

system”.  But it could! 

Finding actual examples is tricky because 

you’re searching for the proof of 

something (say Fermat’s Last Theorem 

that an + bn  cn for n>2 ) never knowing 

if this happens to be something that 

cannot be proved.  It’s like searching the 

sock drawer for the missing sock when 

you don’t even know if the sock is actually 

in the drawer or long thrown away.  

Fermat’s last theorem was eventually 

proved true.  That left the continuum 

hypothesis – how many points are there 

on a straight line.  In fact two 

complementary proofs have been 

constructed which means there really are 

two different answers – termed C or 1. 

You might think that would make 

mathematics inconsistent.  Not at all.  It 

means you can adopted either as an 

additional axiom and it will not cause a 

contradiction in the whole system – 

assuming your original axioms are actually 

consistent of course. Philosophers are left 

to argue which of the two answers might 

really be true if you could step outside the 



system.  Truth really does transcend 

proof. 

There is a curious story about Gödel’s 

application to become a citizen of the 

United States. He thought he had 

discovered a logical flaw in the American 

constitution whereby a dictatorship could 

arise as in Germany.  His sponsors 

Einstein and Morgenstern urged him to 

steer well clear of the topic but at the 

interview the presiding judge actually 

asked Gödel about this.  Before Gödel got 

into too deep water Morgenstern steered 

the conversation away from this sensitive 

area and Gödel was duly granted 

citizenship. 

Let’s finish with Gödel’s second 

incompleteness theorem.  “No axiomatic 

system can prove its own consistency”.  

So for starters we cannot ever know if 

our axioms actually are consistent.  More 

problematic, if you have an inconsistent 

axiomatic system you can actually prove 

anything – from 1 + 1 = 3 upwards.  That 

means if in our presently constructed 

mathematics we manage to prove it is 

consistent, that means it’s inconsistent – 

because only in an inconsistent system can 

we prove consistency. That really is Catch 

22. 

 Robert Goodhand 

Some themes in this article are taken from 

“Riddles in Mathematics” by E. Northrop, 

“Escher Gödel Bach” by D. Hofstadter and 

“The Mathematical Experience” by Davis and 

Hersh.  

 


