Exponential Functions

Assume there exists a function $\operatorname{EXP}(x)$
such that ${ }_{d x} \operatorname{EXP}(x)=\operatorname{EXP}(x)$
that is the function is its own derivative.
Now assume it can be expressed as a power series $\operatorname{EXP}(x)=a_{0}+a_{1} x+a_{2} x^{2} \ldots$ Now it is clear that each term must itself be the derivative of the succeeding term.

So for simplicity set $\mathrm{a}_{0}=\mathrm{I}$.
Hence $a_{1}=x, a_{2}=x^{2} / 2!a_{3}=x^{3} / 3!$ etc. so
$\operatorname{EXP}(x)=1+x+x^{2} / 2!+x^{3} / 3!\ldots$
setting $x=1$ we have
$\operatorname{EXP}(1)=1+1+1 / 2!+1 / 3!\cdots$
Assuming the series to be convergent we denote the sum by e so $\operatorname{EXP}(1)=e$
and in passing $\operatorname{EXP}(0)=1$
We need to demonstrated $\operatorname{EXP}(x)=\mathrm{e}^{\mathrm{x}}$
The first step is to demonstrate that
$\operatorname{EXP}(\mathrm{a})+\operatorname{EXP}(\mathrm{b})=\operatorname{EXP}(\mathrm{a}+\mathrm{b})$
so we multiply out two infinite series $\left(1+\mathrm{a}+\mathrm{a}^{2} / 2!+\mathrm{a}^{\mathrm{a}^{3}} / 3!\ldots\right) \times\left(\mathrm{I}+\mathrm{b}+\mathrm{b}^{\mathrm{b}^{2}} / 2!{ }^{\mathrm{b}^{3}} / 3!\ldots\right)$ Now you can either take it on trust or actually embark on this. Whichever when you write out all the terms in appropriate columns you will find within each factorial group the binomial terms appearing giving for sure $I+(a+b)+1 / 2!(a+b)^{2}+1 / 3!(a+b)^{3}$ Hence $\operatorname{EXP}(\mathrm{a})+\operatorname{EXP}(\mathrm{b})=\operatorname{EXP}(\mathrm{a}+\mathrm{b})$ So now we are the first step in the journey to show EXP is indeed an
exponential function.
Using the same technique of multiplying out infinite series the result may be extended to
$\operatorname{EXP}(\mathrm{a}) \times \operatorname{EXP}(\mathrm{b}) \times \operatorname{EXP}(\mathrm{c})=\operatorname{EXP}(\mathrm{a}+\mathrm{b}+\mathrm{c})$
Hence $[\operatorname{EXP}(\mathrm{a})]^{\mathrm{x}}=\operatorname{EXP}(\mathrm{ax})$
setting $\mathrm{a}=1$
$[\operatorname{EXP}(I)]^{\times}=\operatorname{EXP}(x)$
but we have already set $\operatorname{EXP}(1)=e$
so now we have shown (roll of drums)
$\operatorname{EXP}(x)=e^{x}$. and further
$\mathrm{e}^{\mathrm{x}} \times \mathrm{e}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}+\mathrm{y}}$
This process is valid at this stage for x an integer but by similar processes we can extend into x rational, x negative and ultimately x real.

Now we extend into the complex plane.
Let $y=\cos \theta+i \sin \theta$
${ }^{d y} /{ }_{d \theta}=-\sin \theta+i \cos \theta$
${ }^{\mathrm{d}} /{ }_{\mathrm{d} \theta}=\mathrm{iy}$
$\int d y / y=\int i d \theta$
$\ln y=i \theta+k$ and easily
At $\theta=0, y=1$ Iny $=0$ hence $k=0$
Hence $y=e^{i \theta}$ and hence
$e^{i \theta}=\cos \theta+i \sin \theta$
Setting $\theta=\pi$ we get $\mathrm{e}^{\mathrm{i} \pi}=-\mathrm{l}$
which is the neatest proof you've ever
seen $\nprec r g$

Footnote

It's relatively easy to demonstrate that
$(1+1 / n)^{n}=e$ as $n \rightarrow \infty$
Simply expand as a binomial

$$
\begin{aligned}
& I+n(1 / n)+n(n-1)(1 / n)^{2}(1 / 2!) \\
& \left.\quad+n(n-1)(n-2)(1 /)^{3}\right)^{3}(1 / 3!) \cdots
\end{aligned}
$$

Even at this stage it's clear for n large the n terms on the top neatly cancel the $(1 / \mathrm{n})$
terms but let's be a little more rigid.

$$
\begin{aligned}
(1+1 / n)^{n}=1 & +1+n^{2}(1-1 / n)(1 / n)^{2}(1 / 2!) \\
& +n^{3}(1-1 / n)(1-2 / n)(1 / n)^{3}(1 / 3!)
\end{aligned}
$$

as $\mathrm{n} \rightarrow \infty \mathrm{I} / \mathrm{x} \rightarrow 0$ so
$(1+1 / n)^{n}=1+1+(1 / 2!)+(1 / 3!) \ldots$
which is our original expression for
EXP(n)

