
Forward Difference Tables and Falling Factorials 

Summary 

The first line of integer values of a polynomial f(x) degree n produces a second line of 

difference values given by g(x). The  operator is defined such that g(x) = f(x) and a simple 

proof given why n xn = n!   

While g(x) may be determined by algebraic manipulation this paper introduces falling 

factorials x[n] such that x[n] = nx[x1]. Sterling numbers S1 and S2 convert the expression xn  

and lowers degrees to x[n] enabling direct discrete differentiation to be applied to determine 

the next line of the forward difference table and then to restore the polynomial to standard 

form. 

The  and x[n] operators are then used to determine f(x) directly from a given set of data 

points. 

In conclusion this paper demonstrates the forward difference operator  as discrete 

differentiation and its connection with Taylor’s Series. 

A procedure to determine the simplest polynomial of degree n from n discrete values is 

defined. 

 

  



Introduction 

It is generally appreciated that 

For f(x) = x finite differences are 

0  1  2  3  4  5 

 1  1  1  1  1  (ie 0!) 

For f(x) = x2 finite differences are 

0  1  4  9  16  25 

 1  3  5  7  9 

  2  2  2  2   (ie 1!) 

For f(x) = x3 finite differences are 

0  1  8  27  64  125 

 1  7  19  37  61 

  6  12  18  24 

   6  6  6    (ie 2!) 

For f(x) = x4 finite differences are 

0  1  16  81  256 625 

 1  15  65  175 369 

  14  50  110 194 

   36  60  84 

    24  24     (ie 3!) 

For f(x) = x5 finite differences are 

0  1  32  243 1024 3125 

 1  31  211 781 2101 

  30  180 570 1320 

   150 390 750 

    240 360 

     120 (ie 4!) 

but a simple intuitive explanation is rarely 

forthcoming.  

 

Show by induction n x
n = n! 

where 1 = f(x+1)  f(x) 

and k is the kth finite difference which 

may not be a constant. 

Now clearly 1 x
1 = 1! 

Assume  n x
n = n! 

   n xn dx =  n! dx 

Assuming n to be a constant 

(n xn+1 ) / (n +1) + C1= n! x + C2 

setting x = 0 demonstrates C1= C2 so 

   n xn+1 = (n+1)! x 

Now take the next finite difference 

   n+1 xn+1 = 1 (n+1)! x 

Going back to the definition of 1 

n+1 xn+1 = (n+1)! (x+1)  (n+1)! x 

and multiplying out rhs gives 

  n+1 xn+1 = (n+1)! 

Hence by induction n x
n = n! 

Example 

Let f(x) = x²+2x+1 

f(n) = 4(x+1) + 2  (4x + 2) = 4 

as expected. 

However it becomes extremely tedious to 

calculate every line as a polynomial for 

higher degrees.  Hence we introduce the 

falling factorial. 

  



Falling Factorial Approach 

Define x[n] = x (x1)(x2)…(xn+1) 

that is n terms. 

x[n] = k=0n1(xk) = n! xcn 

so 

x[1] = x  

x[2] = x(x1) 

x[3] = x(x1)(x2) etc. 

and we define 

x[0] = 1 the empty product. 

For reference the rising factorial is 

x(n)  = x (x+1)(x+2)…(x+n1)  

  = k=0n1(x+k) 

There is no universal agreement on the 

notation.  The author fixes x[n] for the falling 

factorial and x(n) for the rising factorial as the 

most logical compromise of competing 

notations. 

Now we can determine 

x[n] =   

(x+1)(x)(x1)(x2)…(xn+3)(xn+2) 

     minus 

(x)(x1)(x2)…(xn+2)(xn+1) = 

{(x)(x1)(x2)…(xn+2)} × 

       {(x+1)(xn+1)} 

which conveniently simplifies to  

x[n] = nx[n1]  

because the last term is missing 

and we compare to d/dx x
n = nxn1 

 

Example 

Now define  x[3] = (x+1)[3]  x[3] 

= (x+1)(x)(x1)  x(x1)(x2) 

which if we multiply all out reduces to 

3x(x1) which is 3x[2] 

Now if we take the polynomial 

f(x) = ax3 + bx2 + cx + d we write 

f(x) = A[x]3+B[x]2+C[x] + D 

where A B C D are constants and 

different from a b c d but may be 

expressed in terms of a b c d if we 

bothered to multiply out. 

We may thus show 

 x[1] = 1 

 x[2] = 2x 

 x[3] = 3x[2] 

 x[4] = 4x[3] 

So the discrete   function representing 

the forward difference recreates the 

differential function when we express xn in 

x[n] terms. 

Hence starting with say 

Ax[3] + Bx[2]+ Cx + D 

the 3 {f(x)} = 6a 

because 3 of the other terms will all 

reduce to zero.  This explains the original 

premise but does not yet give a method 

for switching between a b c d and A B C 

D. For this we need Stirling Numbers. 

  



Stirling Numbers of the 1st Kind S1 

These are used to express falling factorials 

in terms of powers ox x 

x[1] = x 

x[2] = x(x1)  

    = x2  x 

x[3] = x(x1)(x2)  

    = x33x2+2x  

x[4] = x(x1)(x2) (x3) 

    = x46x3+11x26x 

x[5] = x(x1)(x2) (x3) (x4) 

    x510x4+35x350x2+24x 

Tables are available for higher 

polynomials. 

The highest power is always one. 

Stirling Numbers of the 2nd Kind S2 

These are used to express the powers of 

x in terms of falling factorials. 

x = x[1] 

x2 = (x2x) + x  

   = x[2] + x[1]  

ie you enter the first Stirling expression and 

then balance off each successive term in 

sequence 

x3 = x33x2+2x)+3(x2x)+x 

   = x[3] + 3x[2] + x[1] 

x4 = (x46x3+11x26x) + 

 6(x33x2+2x)+7(x2x)+x 

   = x[4]+6x[3]+7x[2]+x[1] 

x5 = (x510x4+25x315x2+x) 

  +10(x46x3+11x26x) 

   +25(x33x2+2x) +15(x2x)+x 

   = x[5]+10x[4]+25x[3]+15x[2]+x[1] 

Tables are available for higher 

polynomials. 

The lowest power is always one. 

Example 

Let f(x) = 3x56x4+2x34x2+5x1 

We translate into falling factorial notation 

by using S2. 

  x[5]  x[4]  x[3]  x[2]  x[1]  k 

3x5 3   30   75   45   3 
6x4   6  36 42 6 

2x3        2    6  2 

4x2       4  4 

5x1           5    1 

giving f(x) =          

  3x[5]+24x[4]+41x[3]+5x[2]+0x[1] 1 

Hence f(x) = 

   15x[4]+96x[3]+123x[2]+10x[1] 

Now we translate that back into 

polynomial notation by using S1. 

   x4  x3  x2  x1  

15x[4]  15  90 165 90  

96x[3]      96 288   192 

123x[2]      123 123 

10x[1]            10 

   15   6  0   11 

Hence the first row of differences are 

given by g(x) = 15x4+6x3+0x211x 

 

  



Checking this result 

Using a graphical calculator determine the 

first few values of  

3x56x4+2x34x2+5x1 

x   0  1  2  3  4  5 

  1     1  9    275  1619   5799 

1st diff  0  10   266  1344   4180  

Now setting g(x) = 15x4+6x311x does 

give coefficients 0,10, 266, 1344, 4180 

As a final check we can enter into the 

graphical calculator the whole expression 

for  ie 

{3(x+1)56(x+1)4+2(x+1)34(x+1)2+5(x+1

) 1}  {3x56x4+2x34x2+5x1} 

which indeed does give the 1st difference 

coefficients 

  0,10, 266, 1344, 4180 

Determining f(x) from a sequence 

x 0  1  2  3  4  5 

 f(0) f(1) f(2) f(3) f(4) f(5) 

  f(0) f(1) f(2) f(3) f(4) 

   2f(0) 2f(1) 2f(2) 2f(3) 

    3f(0) 3f(1) 3f(2) 3f(3) 

Now suppose we have the polynomial  

f(x) = a0 + a1x + a2x
2…an1x

n1 + anx
n 

but then we transform this polynomial 

using S2 into terms of x[n] with coefficients 

bn as yet undetermined. 

f(x) = b0+b1x
[1]+b2x

[2]…bn1x
[n1]+bnx

[n] 

Now we apply the rule 

x[n] =  nx[n1] repeatedly 

f(x) = b1+2b2x
[1]+3b3x

[2]+4b4x
[3] … 

2f(x) = 2!b2x
[1]+(3×2)b3x

[1]+(4×3)b4x
[2]… 

3f(x) = 

3!b3x+(4×3×2)b4x
[1]+(5×4×3)b5x

[2]… 

4f(x) = 

4!b4x+(5×4×3×2)b5x
[1]+(6×5×4×3)b6x

[1] 

Now set x=0 and all terms disappear 

except the first 

f(0) = b0    hence b0 = f(0) 

f(0) = b1   hence b1 = f(0) 

2f(0) = 2! b2  hence b2 = 2f(0) / 2! 

3f(0) = 3! b3  hence b3 = 3f(0) / 3! 

4f(0) = 4! b3  hence b4 = 4f(0) / 3! 

Hence 

f(x) = f(0)+ f(0)x[1]+ 2f(0) / 2! x[2] etc 

That is we construct the forward 

difference table and just take the leading 

terms of each row multiplied by the falling 

factorial divided by n! 

 



Example 

x  0  1  2  3  4  5 

f(x)  2  4  4  10  50  128 

   2  0  14  40  78 

    2  14  26  38 

     12  12  12 

Therefore we determine we have a 

polynomial of the third degree 

Let f(x) = ax3 + bx2 +cx + d 

f(x) = f(0)+ f(0)x[1]+ 2f(0) / 2! x[2] 

f(x) = 2 + 2 x + 2/2! x(x1) 

     + 12/3! x(x1) (x2) 

= 2+(21+4)x+(16)x2+(2)x3 

= 2x3  5x2 + x  2 

However there is a more intuitive way of 

determining the polynomial.  The forward 

difference table immediately gives us the 

x3 term 12/3!= 2 

Deduct this term from the original line 

x  0  1  2  3  4  5 

f(x)  2  4  4  10  50  128 

2x3 0  2  16  54    128  250 

g(x)  2  6  20   44    78 122 

and repeat the process 

g(x)  2  6  20   44    78 122 

   4  14  24   34  44 

    10   10  10  10 

So now we have the x2 term 10/2!= 5 

We now have 

f(x) = 2x3  5x2 +cx  2 

given f(1) = 4 = (a + b + c + d) then 

f(x) = 2x3  5x2 +x  2 

 

Summary 

Taking any function f(x) assumed a 

polynomial and construct the forward 

difference table until the constant is found 

say 6a indicating a cubic. 

Calculate f(x)3 and deduct this from the 

original series and repeat the process to 

determine b and finally c. 

d is immediately given by f(0) 
 

McLaurin Series 

Note the McLaurin series for f(x) is 

f(0) + f ’(0) x + f ’’(0)/2! x
2 + f ’’’(0)/3! x

3 + … 

So the  function is just the discrete 

version of the differential function and the 

McLaurin series just reflects the pattern 

found from the discrete investigation. 
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