Fibonnacci Properties - PaperI

Summary

It is an interesting property that for any
Fibonnacci number F_{k} then
$F_{n k} \bmod F_{k}=0$
that is every multiple of k in F_{k} is divisible by F_{k}. Here is a summary to F_{20}.
$\mathrm{F}_{0}=0$
$F_{1}=I$ and obviously applies for F_{1}.
$F_{2}=1 \quad$ index prime so n / a
$F_{3}=2 \quad$ index prime so n / a
$F_{4}=3 \quad 3 \times F_{2}$
$F_{5}=5 \quad$ index prime so n / a
$\mathrm{F}_{6}=8 \quad 4 \times \mathrm{F}_{3}$
$F_{7}=13$ index prime so n / a
$\mathrm{F}_{8}=21 \quad 7 \times \mathrm{F}_{4}$
$\mathrm{F}_{9}=34 \quad 17 \times \mathrm{F}_{3}$
$\mathrm{F}_{10}=55 \quad \mathrm{II} \times \mathrm{F}_{5}$
$F_{11}=89$ index prime so n / a
$F_{12}=144 \quad 72 \times F_{3} \quad 18 \times F_{6}$
$F_{13}=233$ index prime so n / a
$F_{14}=377 \quad 29 \times F_{7}$
$F_{15}=610 \quad 305 \times F_{3} \quad 122 \times F_{5}$
$F_{16}=1597 \quad 47 \times F_{8}$
$F_{17}=1597$ index prime so n / a
$F_{18}=2584 \quad 1292 \times F_{3} \quad 323 \times F_{6}$ $76 \times F_{9}$
$F_{19}=418 \mathrm{I}$ index prime so n / a
$F_{20}=6765 \quad 1353 \times F_{5} \quad 123 \times F_{10}$

Initial Investigations

$$
\begin{aligned}
& F_{2 n+2}=F_{2 n+1}+F_{2 n+0} \\
& F_{3 n+3}=F_{3 n+2}+F_{3 n+1} \\
& =F_{3 n+1}+F_{3 n+0}+F_{3 n+1} \\
& F_{3 n+3}=2 F_{3 n+1}+I F_{3 n+0} \\
& F_{4 n+4}=F_{4 n+3}+F_{4 n+2} \\
& =F_{4 n+2}+F_{4 n+1}+F_{4 n+1}+F_{4 n+0} \\
& =F_{4 n+1}+F_{4 n+0}+2 F_{4 n+1}+F_{4 n+0} \\
& F_{4 n+4}=\mathbf{3} F_{4 n+1}+2 F_{4 n+0} \\
& F_{5 n+5}=F_{5 n+4}+F_{5 n+3} \\
& =F_{5 n+3}+F_{5 n+2}+F_{5 n+2}+F_{5 n+1} \\
& =F_{5 n+3}+2 F_{5 n+2}+F_{5 n+1} \\
& =F_{5 n+2}+F_{5 n+1}+2 F_{5 n+1}+2 F_{5 n+0} \\
& +F_{5 n+1} \\
& =F_{5 n+2}+4 F_{5 n+1}+2 F_{5 n+0} \\
& =F_{5 n+1}+F_{5 n+0}+4 F_{5 n+1}+2 F_{5 n+0} \\
& F_{5 n+5}=5 F_{5 n+1}+\mathbf{3} F_{5 n+0} \\
& F_{6 n+6}=F_{6 n+5}+F_{6 n+4} \\
& =F_{6 n+4}+F_{6 n+3}+F_{6 n+3}+F_{6 n+2} \\
& =F_{6 n+4}+2 F_{6 n+3}+F_{6 n+2} \\
& =F_{6 n+3}+F_{6 n+2}+2\left(F_{6 n+2}+2 F_{6 n+1}\right) \\
& +F_{6 n+1}+F_{6 n+0} \\
& =F_{6 n+3}+3 F_{6 n+2}+3 F_{6 n+1}+F_{6 n+0} \\
& =F_{6 n+2}+F_{6 n+1}+3\left(F_{6 n+1}+F_{6 n+0}\right) \\
& +3 F_{6 n+1}+F_{6 n+0} \\
& =F_{6 n+2}+7 F_{6 n+1}+4 F_{6 n+0} \\
& =F_{6 n+1}+F_{6 n+0}+7 F_{6 n+1}+4 F_{6 n+0} \\
& F_{6 n+6}=8 F_{6 n+1}+5 F_{6 n+0}
\end{aligned}
$$

Hypothesis

The first hypothesis is that clearly when we decompose $F_{k n+k}$ we will end up with $A \times F_{k n+1}+B \times F_{k n+0}$

Now setting $\mathrm{k}=0$ gives
$F_{k}=A \times F_{1}+B \times F_{0}$
Now as $F_{1}=I$ and $F_{0}=0$ clearly
$F_{k}=k \times F_{1}+B \times F_{0}$
Here the value of B is immaterial
Nevertheless our second hypothesis is that $B=F_{k-1}$

We therefore predict $\mathrm{F}_{7}=13 \mathrm{~F}_{1}+8 \mathrm{~F}_{0}$
which is immediately obvious
but setting $\mathrm{n}=1$
$F_{14}=13 F_{8}+8 F_{7}$
$F_{14}=13 \times 2 I+8 \times 13=377$
a true statement.
and setting $\mathrm{n}=2$
$F_{21}=13 F_{15}+8 F_{14}$
$F_{14}=13 \times 610+8 \times 377=10946$
a true statement

Formal Proof

$F_{k n+k}=A \times F_{k n+1}+B \times F_{k n+0}$
setting $\mathrm{n}=0$
$F_{k}=A \times F_{1}+B \times F_{0}$
hence $A=k$
setting $\mathrm{n}=1$
$\mathrm{F}_{2 \mathrm{k}}=\mathrm{k} \times \mathrm{F}_{\mathrm{k}+1}+\mathrm{B} \times \mathrm{F}_{\mathrm{k}}$
hence $F_{2 k} \bmod F_{k}=0$
Irrespective of the value of B
Hence by induction
$F_{\mathrm{nk}} \bmod F_{\mathrm{k}}=0$ QED

Narrative

If we decompose say F_{10} we can see
clearly what's happening

$$
\begin{aligned}
F_{10} & =F_{9}+F_{8} \\
& =F_{8}+F_{7}+F_{7}+F_{6} \\
& =I F_{8}+2 F_{7}+I F_{6} \\
& =F_{7}+F_{6}+2\left(F_{6}+F_{5}\right)+F_{5}+F_{4} \\
& =I F_{7}+3 F_{6}+3 F_{5}+I F_{4} \\
& =F_{6}+F_{5}+3\left(F_{5}+F_{4}\right)+3\left(F_{4}+F_{3}\right) \\
& \quad+F_{3}+F_{2}
\end{aligned}
$$

$$
=I F_{6}+4 F_{5}+6 F_{4}+4 F_{3}+I F_{2}
$$

$$
=F_{5}+F_{4}+4\left(F_{4}+F_{3}\right)
$$

$$
+6\left(F_{3}+F_{2}\right)+4\left(F_{2}+F_{1}\right)+F_{1}+F_{0}
$$

$$
=I F_{5}+5 F_{4}+I 0 F_{3}+I 0 F_{2}+5 F_{1}+I F_{0}
$$

and up to this point we are producing the terms of Pascals Triangle. But in the next decomposition the last two terms F_{1} and F_{0} do not decompose further.

$$
\begin{aligned}
F_{10}= & F_{4}+F_{3}+5\left(F_{3}+F_{2}\right)+10\left(F_{2}+F_{1}\right) \\
& 10\left(F_{1}+F_{0}\right)+5 F_{1}+F_{0} \\
= & F_{4}+6 F_{3}+15 F_{2}+25 F_{1}+11 F_{1}
\end{aligned}
$$

and we continue with
$F_{10}=F_{3}+7 F_{2}+46 F_{1}+26 F_{0}$
$F_{10}=F_{2}+54 F_{1}+33 F_{0}$
$\mathrm{F}_{10}=55 \mathrm{~F}_{1}+34 \mathrm{~F}_{0}$ as expected
Thus the number of coefficients of all the terms double at each decomposition until the end terms buffer up to F_{1} and F_{0} and thereafter pile up until we have just F_{1} and F_{0} remaining.
prg

Pascals and Fibonnacci

The conclusion of the investigation must be that Fibonnacci numbers relate to Pascal's triangle. To locate we have the terms that actually built up the final F_{10} coefficient and here they are

Numbers on the diagonal lines add to successive Fibonnacci numbers.

Row Expansion

We can chart the number of terms in successive row of the expansion of F_{n}. and it is better to split them into odd and even rows

2n 2
4n 245
6n 2481213
8n 24816273334
IOn 248163258808889

3n 23
5n 2478
7n 248152021
9n 2481631475455
IIn248|63263 I05 |34 |43 |44

It is left as an exercise for the reader to find the general term for odd and even rows.

