General Solutions from the Forward Difference Table

There is a precise mathematical way to produce the formula from the forward difference table, though you need a good command of algebra. Often you can spot a pattern from the simpler rules given previously and a bit of guesswork and trial and error. For those that want to take it further -here it is.

Let | $\mathrm{n}=$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{f}(\mathrm{n})=$ | 0 | l | 2 | 3 | 4 | 5 | 6 |
| | a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} |
| | | $\mathrm{~b}_{0}$ | $\mathrm{~b}_{1}$ | $\mathrm{~b}_{2}$ | $\mathrm{~b}_{3}$ | $\mathrm{~b}_{4}$ | $\mathrm{~b}_{5}$ |
| | | | c_{0} | c_{1} | c_{2} | c_{3} | c_{4} |
| | | | | d_{0} | d_{1} | d_{2} | d_{3} |
| | | | | | e_{0} | e_{1} | e_{2} etc. |

Let $\mathrm{a}=\mathrm{a}_{0} / 0$! Let $\mathrm{b}=\mathrm{b}_{0} / \mathrm{I}$! Let $\mathrm{c}=\mathrm{c}_{0} / 2$! Let $\mathrm{d}=\mathrm{d}_{0} / 3$! etc. \quad ($n \mathrm{~b} 0$! $=1$ by definition) $I^{\text {st }}$ order occur when $\quad b_{0}=b_{1}=b_{2}$ etc.
$2^{\text {nd }}$ order occur when $c_{0}=c_{1}=c_{2}$ etc.
$3^{\text {rd }}$ order occur when $\quad d_{0}=d_{1}=d_{2}$ etc.

$$
\begin{array}{ll}
I^{\text {st }} \text { order } & f(n) \\
2^{\text {nd }} \text { order } & f(n) \\
& =a+b n \\
& =a+(b-c) n+c n^{2} \\
3^{\text {rd }} \text { order } \quad f(n) & =a+b n+c n(n-l)+d n(n-l)(n-2) \\
& =a+(b-c+2 d) n+(c-3 d) n^{2}+d n^{3}
\end{array}
$$

which is about as complicated as you're ever likely to meet. 〇 rg

Producing Summations from the Forward Difference Table

There is a precise mathematical way to produce summations to any number of terms from the forward difference table.

Let $n=1 \begin{array}{llllll} & \\ n & 2 & 3 & 4 & 5 & 6\end{array}$

$f(n)=\quad$| a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | b_{1} | b_{2} | b_{3} | b_{4} | b_{5} |
| | | c_{1} | c_{2} | c_{3} | c_{4} |
| | | | d_{1} | d_{2} | d_{3} |
| | | | | e_{1} | e_{2} |

The sum of the series to n terms is given by
$a_{1} \times{ }^{n} /_{1!}+b_{1} \times{ }^{n(n-1)} /_{2!}+c_{1} \times{ }^{n(n-1)(n-2)} /_{3!}$ etc. until terms become zero.

This expression will give, for example, the summation of n cubic terms.

Let n							
n^{3}	$=$	1	2	3	4	5	6
		8	27	64	125	216	
				19	37	61	91
				12	18	24	30
					6	6	6

So summation to n terms is given by $\quad \ln +{ }^{7 n(n-1)} / 6+12 n(n-1)(n-2) / 6$
which expands out to $1 / 4\left(n^{4}+2 n^{3}+n^{2}\right)=\{1 / 2 n(n+1)\}^{2}$

Relationship between Formula and Summation

Take the sequence

n	0	1	2	3	4	5	6	7
P	-1	1	3	5	7	9	11	13

and sum terms from $n=I$ (setting $p=0$ at $n=0$) to give
$\begin{array}{lllllllll}\mathrm{P} & 0 & 1 & 4 & 9 & 16 & 25 & 36 & 49\end{array}$
now the forward difference table is

$$
\begin{array}{lllllll}
1 & 3 & 5 & 7 & 9 & 11 & 13
\end{array}
$$

So the summation of a series is "one level up" and the formula for next term and summation of terms must be similar..

Let | $n=$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(n)=$ | a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} |
| | | b_{0} | b_{1} | b_{2} | b_{3} | b_{4} | b_{5} |
| | | | c_{0} | c_{1} | c_{2} | c_{3} | c_{4} |
| | | | | d_{0} | d_{1} | d_{2} | d_{3} |

so the $n^{\text {th }}$ term is given by $a_{0} / 0!+b_{0} n / I!+c_{0} n(n-I) / 2!+d_{0} n(n-I)(n-2)(n-3) / 3!\ldots$ and summation is given by $a_{1} n / I!+b_{1} n(n-I) / 2!+c_{1} n(n-l)(n-2)(n-3) / 3!\ldots$ that is you omit the zeroeth term. Essentially you are moving down the second diagonal for summations instead of the first diagonal for the formula alone.

If you map out any typical quadratic and then build up the higher cubic that represents the summation of the quadratic terms it is self evident why you are now working down the second diagonal.

For a fuller mathematical explanation of this read my investigation "Falling Factorials".

