Goldbach's Conjecture

In 1742, an amateur mathematician sent a letter to Euler who was then at the Court of Frederick the great at Potsdam. He noticed that all even numbers (except 4) could be made from adding two (odd) primes together. He wanted to know if this worked for any number no matter how big and could it be proved. Euler took no interest in the problem at all, considering it trivial, but it has remained one of the great unsolved problems in mathematics.

No one made much progress until the Russian number theorist Schnirelmann proved that any number could be represented as the sum of not more than 300000 primes! That seems such an incredibly useless and extremely likely result and one wonders where on earth the figure 300000 comes from. Why so high?

No one could do any better until another Russian, Vinogradov, established that a sufficiently large even number could be represented as the sum of no more than four primes. So that result seemed a lot better than Vinogradov's but what did he mean by "sufficiently large". It meant that only numbers bigger than some value, say v , could be represented this way - but he could give no idea how big v might be.

So in recent years there have been two approaches -

- can 300000 be reduced? and
- how big might v be?

Well the good news is 300000 is now down to 6 - that is for any even number over 4 you won't need more than 6 primes.

As for that "sufficiently large" number v, a man called Brodzkin showed in 1937 that it wouldn't be bigger than $10^{7000000}$ (that's I followed by 7000000 zeros which is still big) and two mathematicians, Chen and Wang have recently managed to get that down to 10^{7194}.

With modern computing power it should soon be possible to check every even number up to that value and so immediately get the six prime number maximum down to four.

Faber and Faber, the publishers have offered a $\$ 1$ million reward for a solution to Goldbach's conjecture that you only need two primes.
Footnote
The most famous unsolved problem in
Maths is the Riemann Hypothesis,
which is about proving a particular
pattern does exist in all prime numbers.
If that's solved, then the "four prime
number" maximum is also immediately
proved. (Don't ask why - it's too
complicated). But that still leaves the
field wide open to get it down to that
elusive "two".
Don't waste too much time on it
though. The smart money is on the fact
that although in practice you never
need more than two prime numbers,
the best that could ever be proved is
four.
There's another weird proof in
mathematics that some things are true
but not provable - and this conjecture
could be one of them. But of course it
will never be possible to prove that it's
"true but not provable" because then
you would have then proved it to be
true - which can't be done!
ne

