Hexagon Flowers

To paraphrase Eric Laithwaite, he said during his famous Christmas Lecture that there is nothing duller than a teacher repeating the same old experiment to a bored class. Teachers need to be bold and have confidence that to know the outcome is not necessarily the prime requisite. So there was a unexpected surprise during a simple Mathematics investigation into patterns.

I was teaching my Intermediate group to deduce functions from a table connecting two variables. I wanted then to make up their own patterns on squared, hexagonal, or triangular paper. I convinced them that any regular pattern would reveal some underlying structure. As a backstop, I suggested "Hexagon Flowers" a favourite in Year 8 and good for anyone looking for a display.

Students draw successive rings of hexagons around a single starting hexagon and measure perimeter and area. I always assumed that perimeters would follow a linear pattern and area some quadratic.

The results for perimeters come out as follows

n	0	I	2	3	4	5
P		6	18	30	42	54
$I^{\text {st }}$ diff.		12	12	12	12	

I teach my students to deduce the value at $\mathrm{n}=0$. Even though you can't draw the $0^{\text {th }}$ hexagon, that value will give you the constant. In this case $\quad p=12 n-6$

Moving on to area, if we measure the total area, we get

n	0	I	2	3	4	5
a_{t}		1	7	19	37	61
$1^{\text {st }}$ diff.		6	12	18	24	
$2^{\text {nd }}$ diff.			6	6	6	

I teach several ways to deduce the function from the table. The easiest to understand is to divide the $2^{\text {nd }}$ difference by 2 to find the coefficient of n^{2}. In this case we have 6 so the n squared term is $3 \mathrm{n}^{2}$.

We then deduct this term from the original values.

n	0	l	2	3	4	5
a_{t}		I	7	19	37	$6 \mid$
$3 \mathrm{n}^{2}$		3	12	27	48	75
Net		-2	-5	-8	-11	-14

As the values are decreasing by 3 , this gives us the linear term. The value at $\mathrm{n}=0$ gives us the constant as before, so we now have $\quad a_{t}=3 n^{2}-3 n+1$ or more neatly $\quad a_{t}=3 n(n-I)+1$

But this day a student decides not to record the total area of each successive hexagon flower, but just the area of each successive ring, to produce

n	0	I	2	3	4	5
a_{i}		I	6	12	18	24
$\mathrm{I}^{\text {st }}$ diff.	5	6	6	6		

Where's teacher's promise now that there will always be a regular pattern? This calls for a bit of hasty thinking.

Now the science department might demur but as a mathematician, let's reject the problem result and reconstruct our table, taking the first true ring as $n=1$.

n	0	l	2	3	4	5
a_{i}	0	6	12	18	24	
$\mathrm{I}^{\text {st }}$ diff.	6	6	6	6		

Now that looks more acceptable. It just remains to reconstruct the original total area table and discount that first solitary hexagon.

n	0	1	2	3	4
a_{t}	0	6	18	36	60
$1^{\text {st }}$ diff.	6	12	18	24	
$2^{\text {nd }}$ diff.			6	6	6

and by the same method we deduce

$$
a_{t}=3 n(n+l)
$$

which has the merit of looking even tidier than our first effort.
The problem lies in that first hexagon drawn. In fact it isn't a hexagon ring at all - it's just a template for the first true ring. Mathematics spots the error and gives us the correct equation for the total area. A neat exercise that kept a teacher on his toes.

