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Preface 

Nearly every text book on complex numbers will open with the statement that the 

imaginary number i = √–1. It may then warn about algebraic limitations on roots with 

a fallacious proof that –1 = +1.  

i is neither a number nor in any sense imaginary.  It is defined by i2 = –1. A square 

root is strictly defined as the positive value but is usually preceded by the symbol ±. 

i is best viewed as an operator on 1, rotating the number by convention through 90º 

anticlockwise.  This defines the “Gaussian” complex plane. 

However other “complex” planes can be constructed which this paper explores. 



Introduction 

I was investigating why there are three 

double angle cosine formulae but only 

one sine and concluded that it was 

our choice that we equated sine with 

the imaginary y-axis and cosine with 

the real x-axis.  This did however lead 

me to discover there are other 

complex planes ;  

for z = a + ib  where i² + 1 = 0  

is the Guassian complex plane with 

which we are most familiar;   

 

z = a + wb   where w² = 0  

is the parabolic complex plane and  

 

z = a + r b (1)   where r² – 1 = 

0  r ≠±1 is the hyperbolic complex 

plane where z is called a hyperbolic or 

bi-complex number – for reasons that 

will become apparent. 

Summary 

Given the ordered pair (a, b)  

where a and b both real  

and r² – 1 = 0  r ≠ ±1  

we have the hyperbolic number  

  z = a + r b.  

There are practical uses for these 

other complex numbers.  The 

Guassian complex plane is suited to 

mathematics of quantum mechanics 

but the hyperbolic complex plane is 

suited to the mathematics of special 

relativity – because there is a sign 

change in the way we treat time in the 

Lorentz transformation  

ds² = dx² + dy² + dz² – (ct)²  (2).  

Four dimensional Minkowski 

spacetime is not the same as four 

dimensional Euclidean space.  

In the investigation I derived the 

relationship  

Sin ( u e1 + v e2 ) = Sin ( u e1 ) + Sin ( v 

e2 )  



Investigation 

First I established 

r = r  r2  = 1 r3  = r  

r4 = 1  r5  = r etc. 

( –r )  = –r ( –r )2 = 1 ( –r )3 = –r  

( –r )4 = 1 ( –r )5 = –r  etc. 

The following relationships can now 

be confirmed :- 

Conjugate 

Define the conjugate z* = a – r b  

as for Guassian complex numbers. 

Then it is easily established 

z z* = | z |² and | z | = √ ( a² – b² ) 

Addition 

setting z = a + r b and w = c + r d 

z + w = w + z = ( a + c ) + r ( b + d ) 

Multiplication 

z × w = w × z = (ac + bd) + r(bc + ad) 

Inverse 

(a + r b )–¹ = ( a + r b )  /  ( a² – b² ) 

but with the additional condition to 

Guassian complex numbers that a ≠ b 

This condition defines the light cones 

in Minkowski space-time diagrams. 

Division 

z / w  =  

 { ( ac – bd ) + ( bc – ad ) } / ( c² – d² ) 

Square Root 

Let z = √ ( a + r b ) = x + ry then 

x = ± √ ½ { a ± √( a² – b² ) }  

and y follows immediately. 

Commutativity of the Conjugate 

It can easily be demonstrated that 

( z + w )*  = z* + w* 

( z × w ) *  = z* × w* 

( z / w )*  = z* / w* 

Commutativity of the Modulus 

It is also easily demonstrated 

| z × w | = | z | × | w | 

| z / w | = | z | / | w | 

In Guassian complex numbers 

| z + w | = | z | + | w |  

if and only if z = kw where k is real 

| z × w |ª = | z |ª × | w |ª   but 

| zª × wª | = | z |ª × | w |ª  

has the restriction “a” real 

and similar for hyperbolic numbers. 

Taylor Series 

Exponential 

Let  ez  = 1 + z + z²/2! + z³/3! … 

Assume erz  = 1+rz+r²z²/2!+r³z³/3! … 

  = 1 + r²z²/2! + r4z4/3! … 

  +  r (z + z³/3! + z5/3!…) 

so  erz = cosh z + r sinh z 

the hyperbolic equivalent of Euler’s 

relationship.



Trigonometric 

First I use capitals eg Sin specifically to 

indicate I am taking a complex value. 

By a similar method to the 

exponential series it is easily 

established  

Sin ( r z )  = r Sin ( z ) 

Cos ( r z )  = Cos ( z )   

perhaps a surprising result 

and for the hyperbolic functions 

Sinh ( r z )  = r Sinh ( z ) 

Cosh ( r z )  = Cosh ( z )  

Which means I can again derive  

 erz = Cosh z + r Sinh z 

For trigonometric functions of the 

form  Sin ( a + r b ) the best I could 

initially establish was 

Sin (a+rb) = Sina Cosb + rCosa Sinb 

Cos (a+rb) = Cosa Cosb – rSina Sinb 

Sinh ( a+r b ) =  

 Sinh a Cosh b + r Cosh a Sinh b 

Cosh ( a + r b ) =  

 Cosh a Cosh b + r Sinh a Sinh b 

Idempotents 

In ring theory (part of abstract 

algebra) an idempotent element, or 

simply an idempotent, of a ring is an 

element a such that a2 = a. 

let ( a + r b )²  = a´ + r b´ 

so a² + b² + 2abr  = a´ + r b´ 

so  a² + b² = a´ 

and  2ab   = b´ 

Hence a = ½ and b² = ¼ so our 

idempotents are 

e1 = ½ ( 1 + r ) and 

e2 = ½ ( 1 – r )  

plus the trivials. 

At this point note 

   e1× e2 = 0 and 

   e1 + e2 = 1 

This is important later on. The first 

restricts hyperbolics to being a ring 

but not a field. 

Trigonometric Alternate Forms 

To obtain a more compact form I 

need to use the idempotents to 

transform  

a + r b into the form 

a + r b = u e1 + v e2 

It is easily established  

a  = ½ ( u + v ) 

b  = ½ ( u – v ) 

and therefore 

u  = a + b 

v  = a – b 

Now I can see why hyperbolics can be 

termed split-complex because I am 



mapping a + r b onto two complex 

plains ( a + b ) and ( a – b ) 

Trigonometric Functions 

Now I can have another attempt at 

these functions. First I establish the 

relationships by writing out the Taylor 

series and extracting the common 

factor. 

Sin ( u e1 )  = e1 Sin u 

Cos ( u e1 ) is a little trickier because I 

don’t have an e1 in the first term so I 

have to subtract 1 and add back e1 to 

produce 

Cos ( u e1 ) =e1 ( Cos u – 1 ) + 1 

which looks ungainly but later is 

exactly what is required.  Also note 

e1 Cos u  = Cos ( u e1 ) + e1 – 1 

By the same method I derive 

Sinh ( u e1 )  = e1 Sinh u 

and again the more ungainly 

Cosh ( u e1 ) = e1 ( Cosh u – 1 ) + 1 

and hence 

e1 Cosh u  = Cosh ( u e1 ) + e1 – 1 

Now I’m ready to have another go at 

Sin ( a + r b ) = Sin ( u e1 + v e2 ) 

 = Sin ( u e1 ) Cos ( v e2 ) +  

  Cos ( u e1 ) Sin ( v e2 ) 

 = e1Sinu { e2 Cos v – e2 + 1}  +  

 { e1 Cos u – e1 + 1} e2 Sin v 

Remembering e1 e2 = 0,  I multiply out 

to e1 Sin u + e2 Sin v 

Hence  

Sin (ue1 + ve2) = Sin (ue1) + Sin (ve2) 

a neat and unexpected relationship. (3) 

Similarly I establish 

Cos (u e1 + v e2) = e1Cos u + e2 Cos v 

The Cos functions are not quite so 

efficient at absorbing the idempotents 

and I get an annoying 

Cos ( u e1 + v e2 ) =   

 Cos ( u e1 ) + Cos ( v e2 ) + 1 

The associated hyperbolic functions of 

hyperbolic numbers are 

Sinh ( u e1 + v e2 ) =  

  Sinh ( u e1 ) + Sinh ( v e2 ) 

and 

Cosh( u e1+ v e2 ) =  

 Cosh( u e1 ) + Cosh ( v e2 ) –1 

Note the minus sign 



Conclusion and Further Study 

I achieved a certain satisfaction in the 

Sin addition formula but was not able 

to relate the circular to hyperbolic 

functions as can be achieved in 

Gaussian complex numbers. I know 

hyperbolic numbers form a ring but 

not a field and need to study this 

further. 

I need to understand the physical 

interpretation of 

Sin ( u e1 + v e2 ) = Sin ( u e1 ) + Sin ( v 

e2 ) 

If I am to study their application in 

special relativity I am going to have to 

tackle differentiation of Guassian 

complex numbers first and revisit the 

Cauchy-Riemann equations and then 

carry that over to hyperbolic 

numbers. 
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