Inverse Circular and Hyperbolic Functions

cos iy

Let $\cos iy = b$ However $\cos iy = \cosh y$ $\cosh y = b$ $y = \cosh^{-1} b$ $so \cos (i \cosh^{-1} b) = b$ $so i \cosh^{-1} b = \cos^{-1} b$ and it immediately follows $i \cosh^{-1} (1/b) = \cos^{-1} (1/b)$ $so i sech^{-1} b = sec^{-1} b$

sin iy

but sin iy = i sinh y so i sinh y = b $y = \sinh^{-1} ({}^{b}/{}_{1})$ sin (I sinh⁻¹ (${}^{b}/{}_{i}) = b$ i sinh⁻¹ (${}^{b}/{}_{i}) = \sin^{-1} b$ Now if I multiply ${}^{b}/{}_{i}$ by ${}^{i}/{}_{i}$ I get ib. Because sinh h is an odd function it follows $- i \sinh^{-1} ib = \sin^{-1} b$ and it immediately follows that $- i \operatorname{cosech}^{-1} ({}^{i}/{}_{ib}) = \operatorname{cosec}^{-1} ({}^{i}/{}_{b})$ and following through the same logic I determine

i $cosech^{-1}$ ib = $cosec^{-1}$ b

tan iy

Let tan iy = b but tan iy = i tanh y so I tanh y = b y = tanh⁻¹ ($^{b}/_{i}$) tan (i tanh ⁻¹ ($^{b}/_{i}$) = b i tanh ⁻¹ ($^{b}/_{i}$) = tanh⁻¹ b and as tanh is also an odd function

i tanh ⁻¹ **ib** = tan⁻¹ **b** and it immediately follows that $- i \operatorname{coth}^{-1} ({}^{1}/_{ib}) = \operatorname{cot}^{-1} ({}^{1}/_{b})$

and by the same logic

i coth $^{-1}$ ib = cot $^{-1}$ b

юrg