I 2 Rules of Logarithms

Preliminaries

$$
\begin{equation*}
\text { if } \quad a=b^{n} \tag{1}
\end{equation*}
$$

Taking logs of both sides we have

$$
\log _{b} a=\log _{b} b^{n}
$$

Assuming the truth of the power rule

$$
\log _{b} a=n \log _{b} b
$$

that is we can pull out the exponent inside a log expression and place it at the front.
Also remember

$$
\begin{equation*}
\log _{b} b=1 \tag{2}
\end{equation*}
$$

Hence $\quad \log _{b} a=n$
which is the definition of a log from (1)
Substituting n back into (1) gives

$$
\begin{equation*}
b^{\wedge} \log _{b} a=a \tag{4}
\end{equation*}
$$

Where $b=10$ then $\log _{10} a$ is written $\log a$ Where $b=e$ then $\log _{e} a$ is written In a and we have the key expression

$$
\begin{equation*}
e^{\ln a}=a \tag{5}
\end{equation*}
$$

This shows that the log function is the inverse of the exponential function. We can now backtrack and formally state the 12 log rules. The first 3 are assumed and given without derivation.

- Product Rule

Rule I

Example

$$
\log _{b}(x y)=\log _{b} x+\log _{b} y
$$

- Quotient Rule

Rule 2

$$
\log _{b}(x / y)=\log _{b} x-\log _{b} y
$$

Example I

$$
\log (6 / 3)=\log 6-\log 3
$$

Example 2

We can combine both rules into one expression.
$\log 6+\log 5-\log 2=\log 15$ which is true for any base.

- Power Rule

Rule 3

$$
\log _{\mathrm{b}} \mathrm{a}^{\mathrm{k}}=\mathrm{k} \times \log _{\mathrm{b}} \mathrm{a}
$$

Example let $6=2^{x}$
$\log 6=\log 2^{x}$
$\log 6=x \log 2$
$x=\log 6 / \log 2$
Thus the power rule gives us a way in to solve exponential equations.

- Inverse Rule

 set $\mathrm{k}={ }^{-}$I in Rule 3$$
\log _{\mathrm{b}} \mathrm{a}^{-1}={ }^{-} \mathrm{I} \times \log _{\mathrm{b}} \mathrm{a}
$$

Rule 4

$$
\log _{b}\left(1 /{ }_{a}\right)=-\log _{b} a
$$

By this rule it can be seen logs for $\mathrm{a}<\mathrm{I}$ are negative, $\log (1)=0$ and there are no logs for $\mathrm{a} \leq 0$ in the real domain.

- Log Product Rule

From (1) $\quad b^{n}=a$
Take logs of both sides to base c

$$
\begin{aligned}
& \log _{c} b^{n}=\log _{c} a \\
& n \log _{c} b=\log _{c} a
\end{aligned}
$$

by (4) we recall

$$
\begin{aligned}
& \mathrm{n}=\log _{\mathrm{b}} \mathrm{a} \\
& \log _{\mathrm{b}} \mathrm{a} \times \log _{\mathrm{c}} \mathrm{~b}=\log _{\mathrm{c}} \mathrm{a}
\end{aligned}
$$

Rearrange to give
Rule $5 \quad \log _{c} b \times \log _{b} a=\log _{c} a$
Example $\quad \log _{3} 4 \times \log _{4} 5=\log _{3} 5$
which is easily recalled

- Base Change Rule

Rearrange Rule 5 to give

$$
\log _{b} a=\log _{c} a / \log _{c} b
$$

set $c=10$ such that $\log _{10} a$ is just $\log a$
Rule $6 \quad \log _{\mathrm{b}} \mathrm{a}={ }^{\log \mathrm{a}} / /_{\log \mathrm{b}}$
Most calculators do not have the option to calculate directly logs in bases other than 10 and e so just use the base change rule.
Example $\quad \log _{3} 5={ }^{\log 5} / \log 3$

- Power Base Rule (tricky)

Used when the base of the log may be expressed as a power.
Let

$$
\begin{aligned}
& \log _{b{ }^{\wedge} a} c=n \\
& \log _{b \wedge_{a}} c=n \log _{b{ }^{\wedge} a} b^{a} \\
& c=b^{a n}
\end{aligned}
$$

Hence $\quad a n=\log _{b} c$
substituting back the expression for n

$$
a \log _{b \wedge_{\mathrm{a}}} \mathrm{c}=\log _{\mathrm{b}} \mathrm{c}
$$

This derivation differs from those commonly given on the internet in that it introduces no superfluous variable.
Rule $7 \quad \log _{b \wedge_{a}} c=1 / a \log _{b} c$
Example I $\log _{16} 5=1 / 4 \log _{2} 5$ and is easily verified by change of base rule.

Hint : Take the index of the base and pull forward to a fraction. Because we are taking the same number to a lower base we need to reduce proportionately the original value.

Example $2 \quad \log _{16} x=\log _{2} 5$

$$
\log _{16} x=1 / 4 \log _{2} x
$$

$$
\log _{16} x=\log _{2} x^{1 / 4}
$$

$$
x^{1 / 4}=5
$$

$$
x=5^{4}
$$

$$
x=625
$$

and the equation is solved without resorting to any logs because one base was a power of the other.

- Power Base Inverse Rule
set $a={ }^{-}$।
Rule $8 \quad \log _{1 / b} C={ }^{-} \log _{b} c$
We can use this rule to change fractional power bases to "whole number" bases.

Example $\quad \log _{1 / 2} 5={ }^{-} \log _{2} 5$
and is easily verified by change of base rule

- Proportionality Rule

from Rule $5 \log _{c} b \times \log _{b} a=\log _{c} a$

$$
\log _{b} a=\log _{c} a / \log _{c} b
$$

However $\log _{c} b$ is independent of a
Hence $\quad \log _{b} a=k \log _{c} a$
Rule $9 \quad \log _{\mathrm{b}} \mathrm{a} \propto \log _{\mathrm{c}} \mathrm{a}$ where constant proportionality is I/ $\log _{c} b$

- Reciprocal Rule

from Rule $5 \log _{c} b \times \log _{b} a=\log _{c} a$
Set $\mathrm{c}=\mathrm{a}$

$$
\log _{a} b \times \log _{b} a=\log _{a} a(\text { ie } I)
$$

Rule $10 \quad \log _{a} b=1 / \log _{b} a$
Example $\quad \log _{3} 5=I / \log _{5} 3$ and this is immediately verified by using the change of base rule.

- Combination Rule

$$
\text { Rule II } \quad \begin{aligned}
& \log _{b} a+k=\log _{b} a+k \log _{b} b \\
& \log _{b} a+k=\log _{b} a+\log _{b} b^{k} \\
& \log _{b} a+k=\log _{b}\left(a \times b^{k}\right)
\end{aligned}
$$

This is used to "pull in" a constant at the end of an expression into the log to simplify further analysis

- Exponential Rule

$$
\begin{equation*}
\mathrm{a}=\mathrm{b}^{\wedge} \log _{\mathrm{b}} \mathrm{a} \tag{4}
\end{equation*}
$$

set $\mathrm{b}=\mathrm{e}$

$$
a=e^{\ln a} \quad \text { given in (5) }
$$

Rule 12

$$
a^{x}=e^{x \ln a}
$$

Example $\quad 3^{2}=e^{2 \ln 3}$
which is easily verified as value 9 by calculator.

This is a key derivation as we can now standardise powers of arbitrary numbers into powers of e. This is required when we investigate raising complex numbers to complex powers.

