12 Rules of Logarithms

Preliminaries

r remmaries	
if $a = b^n$	1
Taking logs of both sides we have	
$\log_{b} a = \log_{b} b^{n}$	
Assuming the truth of the power rule	
log _b a = n log _b b	
that is we can pull out the exponent insi	de a
log expression and place it at the front.	
Also remember	
$\log_{b} b = 1$	2
Hence log _b a = n	3
which is the definition of a log from ${\rm I}\!{\rm O}$	
Substituting n back into ${f 0}$ gives	
$b^{n}\log_{b}a = a$	4
Where $b=10$ then $\log_{10} a$ is written log a	L
Where $b = e$ then log_e a is written ln a	
and we have the key expression	
$e^{\ln a} = a$	5
This shows that the log function is the in	iverse
of the exponential function. We can now	

ential function. V backtrack and formally state the 12 log rules. The first 3 are assumed and given without derivation.

• Product Rule

Rule I	$\log_{b}(xy) = \log_{b}x + \log_{b}y$		
Example	$\log (2 \times 3) = \log 2 + \log 3$		
• Quotient Rul	e		
Rule 2	$\log_{b}(x/y) = \log_{b} x - \log_{b} y$		
Example I	$\log (6/3) = \log 6 - \log 3$		
Example 2			
We can combine both rules into one			
expression.			
log 6 + log 5 – log 2 = log 15			
which is true for any base.			

• Power Rule

log _b a ^k =	k ×	$\log_{b} a$
-----------------------------------	-----	--------------

Example

Rule 3

let

 $6 = 2^{\times}$

 $\log 6 = \log 2^{\times}$ $\log 6 = x \log 2$

 $\mathbf{x} = \frac{\log 6}{\log 2}$

Thus the power rule gives us a way in to solve exponential equations.

Inverse Rule

set k = -1 in Rule 3 $\log_{b} a^{-1} = -1 \times \log_{b} a$ $\log_{b} (1/a) = -\log_{b} a$ Rule 4

By this rule it can be seen logs for a < I are negative, $\log(1) = 0$ and there are no logs for $a \leq 0$ in the real domain.

Log Product Rule

From ① $b^n = a$ Take logs of both sides to base c $\log_{c} b^{n} = \log_{c} a$ $n \log_{c} b = \log_{c} a$ by ④ we recall $n = \log_{b} a$ $\log_{b} a \times \log_{c} b = \log_{c} a$ so Rearrange to give Rule 5 $\log_{b} b \times \log_{b} a = \log_{c} a$

Example $\log_3 4 \times \log_4 5 = \log_3 5$ which is easily recalled

• Base Change Rule

Rearrange Rule 5 to give $\log_{b} a = \log_{c} a / \log_{c} b$ set c = 10 such that log_{10} a is just log a

 $\log_{b} a = \log_{a} / \log_{b}$ Rule 6

Most calculators do not have the option to calculate directly logs in bases other than 10 and e so just use the base change rule. $\log_{3}5 = \frac{\log 5}{\log 3}$ Example

• Power Base Rule (tricky)

Used when the base of the log may be expressed as a power.

Let $\log_{b^{a}} c = n$ $\log_{b^{a}} c = n \log_{b^{a}} b^{a}$ $c = b^{an}$

Hence $an = log_b c$

substituting back the expression for n

 $a \log_{b^{a}} c = \log_{b} c$

This derivation differs from those commonly given on the internet in that it introduces no superfluous variable.

Rule 7 $\log_{b^a} c = \frac{1}{a} \log_b c$

Example I $\log_{16} 5 = \frac{1}{4} \log_2 5$ and is easily verified by change of base rule.

Hint : Take the index of the base and pull forward to a fraction. Because we are taking the same number to a lower base we need to reduce proportionately the original value.

Example 2 $\log_{16} x = \log_2 5$ $\log_{16} x = \frac{1}{4} \log_2 x$ $\log_{16} x = \log_2 x^{1/4}$ $x^{1/4} = 5$ $x = 5^4$ x = 625

and the equation is solved without resorting to any logs because one base was a power of the other.

Power Base Inverse Rule

set a = -1**Rule 8** $\log_{1/b} c = -\log_{b} c$

We can use this rule to change fractional power bases to "whole number" bases.

Example $\log_{\frac{1}{2}} 5 = \log_2 5$ and is easily verified by change of base rule

• Proportionality Rule

from Rule 5 $\log_c b \times \log_b a = \log_c a$ $\log_b a = \log_c a / \log_c b$ However $\log_c b$ is independent of a Hence $\log_b a = k \log_c a$ **Rule 9** $\log_b a \propto \log_c a$ where constant proportionality is 1 / $\log_c b$

• Reciprocal Rule

from Rule 5 $\log_c b \times \log_b a = \log_c a$ Set c = a $\log_a b \times \log_b a = \log_a a$ (ie 1) **Rule 10** $\log_a b = 1 / \log_b a$

Example $\log_3 5 = 1 / \log_5 3$ and this is immediately verified by using the change of base rule.

• Combination Rule

	$\log_{b} a + k = \log_{b} a + k \log_{b} b$
	$\log_b a + k = \log_b a + \log_b b^k$
Rule I I	$\log_{b} a + k = \log_{b} (a \times b^{k})$

This is used to "pull in" a constant at the end of an expression into the log to simplify further analysis

4
ven in ⑤
`

Example $3^2 = e^{2 \ln 3}$ which is easily verified as value 9 by calculator.

This is a key derivation as we can now standardise powers of arbitrary numbers into powers of e. This is required when we investigate raising complex numbers to complex powers.