Multigrades

Pick any three numbers say I and 5 and 7
Create equation I $+7=5+3$
Add the difference of the first two
numbers to each term (in this case 6) (this is only to cancel out a number later on adding any number will work)

So $\quad 7+13=11+9$
Remember we originally had

$$
I+7=5+3
$$

So by cross adding
$7+13+5+3=11+9+1+7$
and also (incredibly)
$7^{2}+13^{2}+5^{2}+3^{2}=11^{2}+9^{2}+1^{2}+7^{2}$
Cancelling out 7 s gives
$13^{2}+5^{2}+3^{2}=11^{2}+9^{2}+1^{2}$
This is written as

$$
13+5+3==^{2} 11+9+1
$$

meaning both the linear sum and sum of squares are equal.

Start again with
$I+9+11=3+5+13$

Add 2

$3+11+13=5+7+15$
Cross add
$3+5+13+3+11+13$

$$
=1+9+11+5+7+15
$$

$3+3+13+13=1+7+9+15$
and
$3^{2}+3^{2}+13^{2}+13^{2}=1^{2}+7^{2}+9^{2}+15^{2}$

Finally if
$1+6+8==^{2} 2+4+9$
then
$12^{2}+64^{2}+89^{2}={ }^{2} 21^{2}+46^{2}+98^{2}$

That such equations can be produced so easily defies intuition

Proof?

Let $\mathrm{a}+\mathrm{c}=\mathrm{b}+(\mathrm{a}+\mathrm{c}-\mathrm{b})$
add $(\mathrm{c}-\mathrm{a})$ to each term both sides
$c+(2 c-a)=(b+c-a)+(2 b-c)$
cross add

$$
\begin{aligned}
& c+(2 c-a)+b+(a+c-b)= \\
& (b+c-a)+(2 c-b)+a+c \\
& (2 c-a)+b+(a+c-b)= \\
& (b+c-a)+(2 c-b)+a
\end{aligned}
$$

ie $3 c=3 c$ and as expected
But now square every term
LHS $=(2 c-a)^{2}+b^{2}+(a+c-b)^{2}$
which if you multiply out reduces to
$2 a^{2}+2 b^{2}+5 c^{2}-2 a b-2 a c-2 b c$

RHS $=(b+c-a)^{2}+(2 c-b)^{2}+a^{2}$
which if you multiply out also reduces to $2 a^{2}+2 b^{2}+5 c^{2}-2 a b-2 a c-2 b c$

Hardly a proof but a demonstration of how it works - but not why.

Anyone have a better idea?
RG multigrades 04/00

