Characteristics of the Normal Distribution Curve

The function is given as

$$
\begin{aligned}
f(x) & =1 / \sqrt{2 \pi} \mathrm{e}^{-1 / 2 x^{2}} \\
& =1 / \sqrt{2 \pi} \mathrm{e}^{\left(1 / 2 x^{2}\right)(-1)} \\
\mathrm{f}^{\prime}(\mathrm{x}) & =1 / \sqrt{2 \pi}(-1)\left(\mathrm{e}^{1 / 2 x^{2}}\right)^{\wedge(-2)}\left(\mathrm{e}^{1 / 2 x^{2}}\right)(\mathrm{x}) \\
& =-\mathrm{x} / \sqrt{2 \pi}\left(\mathrm{e}^{11 / 2 x^{2}}\right)
\end{aligned}
$$

Hence I can see that at $x=0$
$\mathrm{f}^{\prime}(\mathrm{x})=0$ and $\mathrm{f}(\mathrm{x})=1 /{ }^{2} 2 \pi$
Integrating the total area under $\mathrm{e}^{-1 / 2 x^{2}}$
is beyond this short paper but it is
$\sqrt{ } 2 \pi$
The factor thus normalises the curve
of individual strips can be interpreted as a probability.

Back to $f^{\prime}(x)=-x / \sqrt{2 \pi\left(e^{n 1 / 2} x^{2}\right)}$
Let $\mathrm{u}=-\mathrm{x}$ so $\mathrm{du}=-\mathrm{I}$
Let $v=e^{1 / 2 x^{2}}$ so $d v=e^{1 / 2 x^{2}}(x)$
so $\sqrt{ } 2 \pi^{d^{2} y} \|_{d x^{2}}=(v d u-u d v) / v^{2}$

$$
\begin{aligned}
& =\left\{-\mathrm{e}^{\left(1 / 2 x^{2}\right)}+\mathrm{xe}^{\left(1 / 2 x^{2}\right)}(\mathrm{x})\right\} / \mathrm{e}^{x^{2}} \\
& =\mathrm{x}^{2}-\mathrm{I} / \mathrm{e}^{\left(1 / 2 x^{2}\right)}
\end{aligned}
$$

So I can immediately see that at
$x^{2}-I=0$ we have $d^{d^{2} y} \|_{d x^{2}}=0$
That is $x= \pm I$

We know this to be correct. The point of inflexion where the second derivative is zero occurs at plus/minus I standard deviations.

To summarise

Maximum occurs at $\left(0,1 / \sqrt{2}_{2 \pi}\right)$ and zero curvature occurs at $\left(\pm \mathrm{I}, \mathrm{e}^{-1 / 2} / \sqrt{\sqrt{2}}\right) \cong(\pm \mathrm{I}, 0.242)$

A quick check on the graphical calculator confirms this.
$\bigcirc r g$

