Characteristics of the Normal Distribution Curve

The function is given as

$$f(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \mathbf{x}^{2}}$$

= $\frac{1}{\sqrt{2\pi}} e^{\frac{1}{2} \mathbf{x}^{2}/(-1)}$
f'(x) = $\frac{1}{\sqrt{2\pi}} (-1) (e^{\frac{1}{2} \mathbf{x}^{2}})^{(-2)} (e^{\frac{1}{2} \mathbf{x}^{2}}) (x)$
= $-\mathbf{x} / \sqrt{2\pi} (e^{\frac{1}{2} \mathbf{x}^{2}})$

Hence I can see that at x = 0

f'(x) = 0 and f (x) = $\frac{1}{\sqrt{2\pi}}$

Integrating the total area under $e^{-\frac{1}{2}x^2}$ is beyond this short paper but it is $\sqrt{2\pi}$

The factor thus normalises the curve to fix the area as 1 so that the areas of individual strips can be interpreted as a probability. Back to f' (x) = $-x / \sqrt{2\pi} (e^{x}/2x^2)$ Let u = -x so du = -1Let v = $e^{\frac{1}{2}x^2}$ so dv = $e^{\frac{1}{2}x^2}$ (x) so $\sqrt{2\pi} \frac{d^2y}{dx^2} = (vdu - u dv) /v^2$ = $\{-e^{(\frac{1}{2}x^2)} + xe^{(\frac{1}{2}x^2)}(x)\} / e^{x^2}$ = $x^2 - 1 / e^{(\frac{1}{2}x^2)}$

So I can immediately see that at $x^2-I = 0$ we have $\frac{d^2y}{dx^2} = 0$ That is $x = \pm I$ We know this to be correct. The point of inflexion where the second derivative is zero occurs at plus/minus I standard deviations.

To summarise

Maximum occurs at $(0, \frac{1}{\sqrt{2\pi}})$ and zero curvature occurs at $(\pm 1, e^{-\frac{1}{2}}/\sqrt{2\pi}) \cong (\pm 1, 0.242)$

A quick check on the graphical calculator confirms this.

юrg