Pentatope Numbers												
The third diagonal of Pascal's Triangle gives the number sequence												
I		5		15		35		70		126		
If we construct a forward difference table and extend back a remarkable pattern emerges.												
Start with	I	5	15	35	70	126						
		4	10	20	35	56						
			6	10	15	21						
				4	5	6						
					I	I						
Now extend back that 4 5 6 sequence to						0	I	2	3	4	5	6
	0	0	0	0	I	5	15	35	70	126		
	0	0	0	L	4	10	20	35	56			
	0	0	I	3	6	10	15	21				
	0	I	2	3	4	5	6					
с I												

So we have a sequence of numbers that appears to be a quartic and gives as the first four terms the value 0.

Taking the first term as n = 0 and using standard techniques the generating equation can be shown to be $(x^4 - 6x^3 + 11x^2 - 6x) \div 24$. But consider that factorisation is possible. As the terms are 0 for the first four terms that suggests the factors must be x, (x-1), (x-2) and (x-3).

By examination, it can be seen that the term $\div 24$ must be retained and indeed the equation is $(x^4 - 6x^3 + 11x^2 - 6x) \div 24 = x (x-1) (x-2) (x-3) \div 24$.

Pentatope numbers are the number of intersections of lines connecting all vertices of an n-gon, with the additional proviso that you need to make the n-gon slightly irregular so that every two-line intersection is discreet. The number of possible vertices of an n-gon is easily shown to be $\frac{1}{2}$ n (n–3)

So the consequential number of intersections multiplies this by the additional term (n-2)(n-3)/12. I have yet to deduce exactly why this is so, but it is probably connected with Euler's formula and a bit of combinatorics. \bigcirc RG pentatope 02/0