Pentatope Numbers

The third diagonal of Pascal's Triangle gives the number sequence

1	5	15	35	70	126

If we construct a forward difference table and extend back a remarkable pattern emerges.

Start with	1	5	15	35	70	126
4	10	20	35	56		
		6	10	15	21	
			4	5	6	
				1	1	

Now extend back that 456 sequence to $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$

0	0	0	0	1	5	15	35	70	126
0	0	0	1	4	10	20	35	56	
0	0	1	3	6	10	15	21		
0	1	2	3	4	5	6			

So we have a sequence of numbers that appears to be a quartic and gives as the first four terms the value 0 .

Taking the first term as $\mathrm{n}=0$ and using standard techniques the generating equation can be shown to be $\left(x^{4}-6 x^{3}+11 x^{2}-6 x\right) \div 24$. But consider that factorisation is possible. As the terms are 0 for the first four terms that suggests the factors must be $x,(x-1),(x-2)$ and $(x-3)$.

By examination, it can be seen that the term $\div 24$ must be retained and indeed the equation is $\left(x^{4}-6 x^{3}+11 x^{2}-6 x\right) \div 24=x(x-1)(x-2)(x-3) \div 24$.

Pentatope numbers are the number of intersections of lines connecting all vertices of an n-gon, with the additional proviso that you need to make the n-gon slightly irregular so that every two-line intersection is discreet. The number of possible vertices of an n-gon is easily shown to be $1 / 2 \mathrm{n}(\mathrm{n}-3)$

So the consequential number of intersections multiplies this by the additional term $(n-2)(n-3) / 12$. I have yet to deduce exactly why this is so, but it is probably connected with Euler's formula and a bit of combinatorics.

