## Mr G’s Little Book on

# Perfect and 

Amicable

## Numbers

How to Find Perfect Numbers
6 is perfect because $I+2+3=6$ and
28 because $1+2+4+7+14=28$

## Step I

Write down the powers of 2.
ie start with 2 and keep doubling

| 2 | 4 | 8 | 16 | 32 |
| :--- | :--- | :--- | :--- | :--- |
| 64 | 128 | 256 | 512 | 1024 |
| 2048 | 4096 | 8192 | 16384 | 32768 |

## Step 2

Now subtract I from each number

| 1 | 3 | 7 | 15 | 31 |
| :--- | :--- | :--- | :--- | :--- |
| 63 | 127 | 255 | 511 | 1023 |
| 2048 | 4095 | 8191 | 16383 | 32767 |

## Step 3

Spot the numbers that are prime This is a bit tricky - maybe look on google

| 1 | $\underline{3}$ | $\underline{7}$ | 15 | $\underline{31}$ |
| :--- | :--- | :--- | :--- | :--- |
| 63 | $\underline{127}$ | 255 | 511 | 1023 |
| 2047 | 4095 | $\underline{8191}$ |  |  |

Now pair up these prime numbers with the previous power of 2 and multiply the two numbers together.
$3 \times 2=6$
$7 \times 4=28$
31 $\times 16=496$
$127 \times 64=81286$
$8191 \times 4096=33550336$
And these are all perfect numbers.

## Commentary

How would you find that last one if you didn't know the trick? There are more but they get very big very quickly. There is a good reason why this trick works to find all EVEN perfect numbers.

That leaves open the question as to whether there is an odd perfect number. There is as yet no way either to determine one or to determine whether is exists or does not exist. Quite a bit has been determined as to its nature if it did exist.

The smart money is that there isn't one and the smarter money is that its non existence is not provable.

## How to Find Amicable Numbers

220 and 284 are amicable because
factors of 220 are I 245 IO II 2022
4455 IIO (220) which add to 284
factors of 284 are I 247 I 142 (284)
which add to 220
There are no known rules to find all
amicable numbers only (complicated) rules to find some of them.

The next pair (II84, I I20) wasn't discovered until I866 by a teenager
called Nicolo Paginini despite famous mathematicians searching for hundreds of years before him.

The next pair are $(2620,2924)$ and $(5020,5564)$ but don't take my word for it. Prove it but you can use a calculator.

If you and your friend each carry one number you are guaranteed to stay friends for life (maybe).

