Equations of Motion, Force, Work, Energy et al

Equations Motion

For constant acceleration we define
$\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$
and we rearrange to get
I) $v=u+a t$
(no sterm)
From the concept that distance is average
speed x time we get
2) $s=1 / 2(u+v) t$
(no a term)

Putting the value of v from 1) into 2) we get
3) $s=u t+1 / 2 a t^{2}$
(no v term)
Putting the value of \mathbf{u} from 1) into 2) we get
4) $s=v t-1 / 2 a t^{2}$
(no u term)
Finally putting t from I) into 2) we get
5) $v^{2}=u^{2}+2 a s$
(no term)
Thus we work with five equations, each equation inter-relating 4 terms from "suva $t^{\prime \prime}$ and leaving out the $5^{\text {th }}$. It is recommended the student carries out each of these substitutions to gain familiarity.
nb Differentiating I) gives the definition of acceleration.

Differentiating 3) gives I).

> Force, Work, Energy, Momentum Impulse $\begin{aligned} \text { force } & =\text { mass } \times \text { acceleration } \\ \text { F } & =\mathrm{m} \mathrm{a} \\ \text { work } & =\text { force } \times \text { distance } \\ \mathrm{W} & =\mathrm{Fs}\end{aligned}$

Energy is the potential to do work so has the same units
power $\quad=$ rate of doing work

$$
P \quad=F s / t
$$

momentum $=$ mass \times velocity

$$
P \quad=m v
$$

impulse $\quad=$ force \times time (duration)

$$
I \quad=F \times \Delta t
$$

hence impulse $=$ change in momentum

$$
\text { I } \quad=m v-m u
$$

the units are thus either $\mathrm{kg}-\mathrm{m} / \mathrm{s}$ or N -s
In collisions, momentum after $=$ momentum before so

$$
m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}
$$

Moments

If force [a ${ }_{\mathrm{b}}$] acts on position vector $\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{l}}\right)$ the moment about $(0,0)$ taking anticlockwise as positive is ${ }^{-}(y, a)+(x, b)$

The moment about $\left(x_{2}, y_{2}\right)$ is

$$
-\left\{\left(y_{1}-y_{2}\right) a\right\}+\left\{\left(x_{1}-x_{2}\right) b\right\}
$$

$>\quad r g$

