General Formula for Polygon Numbers

Polygon Numbers

Let $\Delta_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ triangular number which are I	3	6	10	15	21	28	
Square numbers are $\Delta_{\mathrm{n}}+\Delta_{\mathrm{n}-1}$ which are I	4	9	16	25	36	49	
Check	I	3	6	10	15	21	28
		1	3	6	10	15	21
summing gives	I	$\mathbf{4}$	9	16	$\mathbf{2 5}$	$\mathbf{3 6}$	49 checks
Pentagonal numbers are $\Delta_{\mathrm{n}}+2 \times \Delta_{\mathrm{n}-1}$	I	5	12	22	35	51	70
Check	I	3	6	10	15	21	28
		2	6	12	20	30	42
summing gives	I	$\mathbf{5}$	12	22	35	51	70 checks
Hexagonal numbers are $\Delta_{\mathrm{n}}+3 \times \Delta_{\mathrm{n}-1}$	I	6	15	28	45	66	91
Check	I	3	6	10	15	21	28
		3	9	18	30	45	63

So let $\varepsilon \quad=$ no. sides of polygon
From direct examination of the physical patterns

$$
\begin{aligned}
\varepsilon_{\text {gon }} & =\Delta_{n}+(\varepsilon-3) \Delta_{n-1} \\
& =1 / 2 n(n+1)+1 / 2(\varepsilon-3) n(n-1) \\
& =1 / 2 n\{n+1+(\varepsilon-3)(n-1)\} \\
& =1 / 2 n(2+\varepsilon n+\varepsilon-2 n+2) \\
& =1 / 2 n\{(2+(\varepsilon-2)(n-1)\}
\end{aligned}
$$

This is the general formula for the $n^{\text {th }}$ term of an $\varepsilon_{\text {gon }}$ number

Polygon-Centred Numbers

From direct examination of the physical patterns
Centred triangular numbers are $3 \times 1 / 2 n(n-1)+1$
Centred square numbers are $4 \times 1 / 2 n(n-I)+I$ etc.
and the general formula for a centred $\varepsilon_{\text {gon }}$ is $1 / 2 \varepsilon n(n-I)+I$
\bigcirc RG polygon_formula 02/01

