General Formula for Polygon Numbers

Poly	gon	Numl	bers
------	-----	------	------

Let $\Delta_n = n^{th}$ triangular number which ar	re I	3	6	10	15	21	28
Square numbers are $\Delta_n + \Delta_{n-1}$ which ar	e l	4	9	16	25	36	49
Check I		3	6	10	15	21	28
		Ι	3	6	10	15	21
summing gives		4	9	16	25	36	49 checks
Pentagonal numbers are Δ_n + 2 x Δ_{n-1}		5	12	22	35	51	70
Check	Т	3	6	10	15	21	28
		2	6	12	20	30	42
summing gives	I	5	12	22	35	51	70 checks
Hexagonal numbers are Δ_n + 3 x Δ_{n-1}		6	15	28	45	66	91
Check	Т	3	6	10	15	21	28
		3	9	18	30	45	63
summing gives	I	6	15	28	45	66	91 checks

So let ϵ = no. sides of polygon

From direct examination of the physical patterns

$$\begin{aligned} \epsilon_{gon} &= \Delta_n + (\epsilon - 3) \Delta_{n-1} \\ &= \frac{1}{2} n (n + 1) + \frac{1}{2} (\epsilon - 3) n (n - 1) \\ &= \frac{1}{2} n \{ n + 1 + (\epsilon - 3) (n - 1) \} \\ &= \frac{1}{2} n (2 + \epsilon n + \epsilon - 2n + 2) \\ &= \frac{1}{2} n \{ (2 + (\epsilon - 2) (n - 1) \} \end{aligned}$$

This is the general formula for the n^{th} term of an ϵ_{gon} number

Polygon-Centred Numbers

From direct examination of the physical patterns

Centred triangular numbers are $3 \times \frac{1}{2} n(n-1) + 1$

Centred square numbers are $4 \times \frac{1}{2} n(n-1) + 1$ etc.

and the general formula for a centred ϵ_{gon} is ½ ϵ n (n-1) + 1

∞ RG polygon_formula 02/01