An Investigation into Power Series - Method I

Definitions

Define

$R_{n}=1+2+3+4+\ldots n$
$S_{n}=1 \times 2+2 \times 3+3 \times 4+4 \times 5+\ldots n(n+1)$
$T_{n}=1 \times 2 \times 3+2 \times 3 \times 4+\ldots n(n+1)(n+2)$
$U_{n}=1 \times 2 \times 3 \times 4+\ldots n(n+1)(n+2)(n+3)$

Conjecture

$R_{n}=1 / 2 n(n+1)$
$S_{n}=1 / 3 n(n+1)(n+2)$
$T_{n}=1 / 4 n(n+1)(n+2)(n+3)$
$U_{n}=1 / 5 n(n+1)(n+2)(n+3)(n+5)$

Proof by Induction

First step

To show the formulae are correct for $\mathrm{n}=$ I. This is readily demonstrated as the last term cancel the denominator of the fraction and all that is left is the first term

Second step

To demonstrate

$$
\begin{aligned}
& 1 / 2 n(n+1)+(n+1)=1 / 2 n(n+1)(n+2) \\
& 1 / 3 n(n+1)(n+2)+(n+1)(n+2) \\
& \quad=1 / 3 n(n+1)(n+2)(n+3) \\
& 1 / 4 n(n+1)(n+2)(n+3) \\
& \quad+(n+1)(n+2)(n+3) \\
& \quad=1 / 4 n(n+1)(n+2)(n+3)(n+4)
\end{aligned}
$$

$$
\begin{aligned}
& 1 / 5 n(n+1)(n+2)(n+3) \\
& \quad+(n+1)(n+2)(n+3)(n+4) \\
& =1 / 5 n(n+1)(n+2)(n+3)(n+4)(n+5)
\end{aligned}
$$

As a preliminary to check on the right path I entered the left and right hand side of each equation into a graphical calculator and checked the tables generated were identical in each case.

Algebraically take the $\mathrm{k}^{\text {th }}$ term
$1 / k n(n+l)(n+2) \ldots(n+k-I)$
$+(n+1)(n+2) \ldots(n+k-l)$
$=(n+l)(n+2) \ldots(n+k-I)\left({ }^{n} /{ }_{k}+{ }^{k} / k\right)$
$=1 / k(n+1)(n+2) \ldots(n+k-I)(n+k)$
which was fairly painless.
Therefore we proved the conjecture by induction.

Power Series

The task is to establish power series for $1^{k}+2^{k}+3^{k}+4^{k} \ldots$

First is to establish the summation formulae as polynomials by multiplying out the brackets.
$R_{n}=1 / 2\left\{n^{2}+n\right\}$
$S_{n}=1 / 3\left\{n^{3}+3 n^{2}+2 n\right\}$
$T_{n}=1 / 4\left\{n^{4}+6 n^{3}+11 n^{2}+6 n\right\}$
$U_{n}=1 / 5\left\{n^{5}+10 n^{4}+35 n^{3}+50 n^{2}+24 n\right\}$

Now recall that

$$
\begin{aligned}
S_{n} & =\sum n(n+l) \\
& =\sum n^{2}+\sum n \\
\sum n^{2} & =S_{n}-\sum n \\
\sum n^{2} & =S_{n}-R_{n}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
T_{n} & =\sum n(n+1)(n+2) \\
& =\sum\left(n^{3}+3 n^{2}+2 n\right) \\
& =\sum n^{3}+\sum 3 n^{2}+\sum 2 n \\
\sum n^{3} & =T_{n}-\sum 3 n^{2}-\sum 2 n
\end{aligned}
$$

from whence we can deduce
$\sum n^{3}=T_{n}-3\left(S_{n}-R_{n}\right)-2 R_{n}$
$\sum n^{3}=T_{n}-3 S_{n}+2 R_{n}$
So each time having established a new power series we use result to establish a further power series.

Summarising we establish
$\sum n^{2}=S_{n}-R_{n}$
$\sum n^{3}=T_{n}-3 S_{n}+R_{n}$
$\sum n^{4}=U_{n}-6 T_{n}+7 S_{n}-R_{n}$
$\sum n^{5}=V_{n}-10 U_{n}+25 T_{n}-155 S_{n}-R_{n}$
As an exercise I entered R_{n} into $Y I$, S_{n} into $Y 2, T_{n}$ into $Y 3, U_{n}$ into $Y 4$ as was able demonstrate each summation was correct.

General Solution

From here the way to a general solution can be traced but it will not be pursued here. However as an introduction we can draw a table of indices

Patterns Observed

n^{k} has k terms
The first term is always I.
The second term is the $(\mathrm{n}-\mathrm{I})^{\text {th }} \Delta$ number
Terms start +ve and then alternate in sign.
It is now conjectured that the $3^{\text {rd }}$ term is the 4-D pyramidal number but higher dimensional pyramidal numbers are not particularly common. The left handed diagonal numbers are not recognised.

Power Series as Factored Expressions

$\sum n=1 / 2 n(n+1)$
$\sum n^{2}=1 / 6 n(n+1)(2 n+1)$
$\sum n^{3}=\{1 / 2 n(n+1)\}^{2}$
$\sum n^{4}=1 / 30 n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)$
$\sum n^{5}=1 / 12 n^{2}(n+1)^{2}(2 n+1)\left(2 n^{2}+2 n-1\right)$
$\sum n^{6}=1 / 12 n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right)$
$\sum n^{7}=1 / 24 n^{2}(n+1)^{2}\left(3 n^{4}+6 n^{3}-n^{2}-4 n+2\right)$
and further powers are available for
reference on the internet.
To be continued ...?

