An Investigation into Power Series – Method I

Definitions

Define

 $R_n = 1 + 2 + 3 + 4 + \dots n$ $S_n = 1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + \dots n(n+1)$ $T_n = 1 \times 2 \times 3 + 2 \times 3 \times 4 + \dots n(n+1)(n+2)$ $U_n = 1 \times 2 \times 3 \times 4 + \dots n(n+1)(n+2)(n+3)$

Conjecture

 $R_{n} = \frac{1}{2} n (n+1)$ $S_{n} = \frac{1}{3} n (n+1) (n+2)$ $T_{n} = \frac{1}{4} n (n+1) (n+2) (n+3)$ $U_{n} = \frac{1}{5} n (n+1) (n+2) (n+3) (n+5)$

Proof by Induction

First step

To show the formulae are correct for n = 1. This is readily demonstrated as the last term cancel the denominator of the fraction and all that is left is the first term

Second step

To demonstrate

$$\frac{1}{2} n (n+1) + (n+1) = \frac{1}{2} n (n+1) (n+2)$$

$$\frac{1}{3} n (n+1) (n+2) + (n+1)(n+2)$$

$$= \frac{1}{3} n (n+1) (n+2) (n+3)$$

$$\frac{1}{4} n (n+1) (n+2) (n+3)$$

$$+ (n+1) (n+2) (n+3)$$

$$= \frac{1}{4} n (n+1) (n+2) (n+3) (n+4)$$

'/₅ n (n+1) (n+2) (n+3)

+ (n+1) (n+2) (n+3) (n+4) = ${}^{1}/{}_{5}$ n (n+1) (n+2) (n+3) (n+4) (n+5) As a preliminary to check on the right path I entered the left and right hand side of each equation into a graphical calculator and checked the tables generated were identical in each case. Algebraically take the kth term ${}^{1}/{}_{k}$ n (n+1) (n+2) ... (n+k-1) + (n+1) (n+2) ... (n+k-1) = (n+1) (n+2) ... (n+k-1) ({}^{n}/{}_{k}+{}^{k}/{}_{k})

 $= \frac{1}{k} (n+1) (n+2) \dots (n+k-1) (n+k)$

which was fairly painless.

Therefore we proved the conjecture by induction.

Power Series

The task is to establish power series for $I^{k} + 2^{k} + 3^{k} + 4^{k} \dots$

First is to establish the summation formulae as polynomials by multiplying out the brackets.

$$R_{n} = \frac{1}{2} \{ n^{2} + n \}$$

$$S_{n} = \frac{1}{3} \{ n^{3} + 3n^{2} + 2n \}$$

$$T_{n} = \frac{1}{4} \{ n^{4} + 6n^{3} + 11n^{2} + 6n \}$$

$$U_{n} = \frac{1}{5} \{ n^{5} + 10n^{4} + 35n^{3} + 50n^{2} + 24n \}$$

Now recall that

$$S_{n} = \sum n(n+1)$$
$$= \sum n^{2} + \sum n$$
$$\sum n^{2} = S_{n} - \sum n$$
$$\sum n^{2} = S_{n} - R_{n}$$

Similarly

 $T_{n} = \sum n(n+1)(n+2)$ = $\sum (n^{3} + 3n^{2} + 2n)$ = $\sum n^{3} + \sum 3n^{2} + \sum 2n$ $\sum n^{3} = T_{n} - \sum 3n^{2} - \sum 2n$

from whence we can deduce

$$\sum n^{3} = T_{n} - 3 (S_{n} - R_{n}) - 2 R_{n}$$
$$\sum n^{3} = T_{n} - 3 S_{n} + 2 R_{n}$$

So each time having established a new power series we use result to establish a further power series.

Summarising we establish

$$\sum n^{2} = S_{n} - R_{n}$$

$$\sum n^{3} = T_{n} - 3S_{n} + R_{n}$$

$$\sum n^{4} = U_{n} - 6T_{n} + 7S_{n} - R_{n}$$

$$\sum n^{5} = V_{n} - 10U_{n} + 25T_{n} - 155S_{n} - R_{n}$$

As an exercise I entered R_n into YI, S_n into Y2, T_n into Y3, U_n into Y4 as was able demonstrate each summation was correct.

General Solution

From here the way to a general solution can be traced but it will not be pursued here. However as an introduction we can draw a table of indices

n²	I (I)	
n³	I (3) I	
n⁴	I (6) 7 (I)	
n⁵	l (10) 25 (15) l	
n ⁶	I (15) 65 (90) 315 (1)	

Patterns Observed

n^k has k terms

The first term is always 1.

The second term is the $(n-1)^{th} \Delta$ number Terms start +ve and then alternate in sign. It is now conjectured that the 3rd term is the 4-D pyramidal number but higher dimensional pyramidal numbers are not particularly common. The left handed diagonal numbers are not recognised.

Power Series as Factored Expressions

$$\sum n = \frac{1}{2} n (n+1)$$

$$\sum n^{2} = \frac{1}{6} n (n+1) (2n+1)$$

$$\sum n^{3} = {\frac{1}{2} n (n+1)}^{2}$$

$$\sum n^{4} = \frac{1}{30} n (n+1) (2n+1) (3n^{2} + 3n - 1)$$

$$\sum n^{5} = \frac{1}{12} n^{2} (n+1)^{2} (2n+1) (2n^{2} + 2n - 1)$$

$$\sum n^{6} = \frac{1}{12} n (n+1) (2n+1) (3n^{4}+6n^{3}-3n+1)$$

$$\sum n^{7} = \frac{1}{24} n^{2} (n+1)^{2} (3n^{4}+6n^{3}-n^{2}-4n+2)$$
and further powers are available for
reference on the internet.
To be continued ...?

$$\sum rg$$