Power Sums

Take any number and add together each digit raised to the power n and repeat. What happens?

After completing the investigations and armed with "solutions" of certain patterns I searched the internet to discover there are numbers called perfect digital invariants (PDI's) – number whose digits raised to a specific power sum to themselves. We always discount I and variants of.

Numbers that cycle round are called recurring digital invariants (RDI).

Squares

The only numbers that sum to themselves are 1 10 100 etc. Between 1 and 100 there are 20 numbers that eventually sum to 1 1 7 10 13 19 23 28 31 32 44 49 68 70 79 82 86 91 94 97 100 eg 23 \Rightarrow 2² + 3² = 13 \Rightarrow 1² + 3² = 10 \Rightarrow 1² = 1 end All other numbers between 1 and 100 end up in the cycle 4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89 \rightarrow 145 \rightarrow 42 \rightarrow 20 \rightarrow 4

Cubes

There are 4 PDIs - 153, 371, 370 and 407

 $|53 = |^3 + 5^3 + 3^3 = |53 \ 37| \Rightarrow 3^3 + 7^3 + |^3 = 37|$

 $370 = 3^3 + 7^3 + 0^3 = 370\ 407 \Longrightarrow 4^3 + 0^3 + 7^3 = 407$

Between I and 100 there are 33, 28 13 and 5 numbers respectively end up at one of these 4 numbers.

There are two 2-stage RDIs - $352 \rightarrow 160 \rightarrow 352$ and $1459 \rightarrow 919 \rightarrow 1459$.

Five and two numbers between I and 100 end here.

A third one is $136 \rightarrow 244 \rightarrow 136$ which I missed as nothing smaller cycles in to this.

I found one 3-stage RDI 133 \rightarrow 55 \rightarrow 250 which 11 numbers under 100 feed into. These are all the cubic PDIs and RDIs that exist.

Quartics

There are 2 PDIs – 1634 and 8208.

4 numbers that cycle into 8208 are 12, 17, 21 and 71.

I found two RDIs namely $6514 \rightarrow 2178 \rightarrow 6514$ and

 $|3|39 \rightarrow 6725 \rightarrow 4338 \rightarrow 45|4 \rightarrow |138 \rightarrow 4|79 \rightarrow 92|9 \rightarrow |3|39$

I believe this exhausts all possibilities.

Robert Goodhand

IIth November 2019