Power Sums

Take any number and add together each digit raised to the power n and repeat. What happens?

After completing the investigations and armed with "solutions" of certain patterns I searched the internet to discover there are numbers called perfect digital invariants (PDI's) - number whose digits raised to a specific power sum to themselves. We always discount I and variants of.

Numbers that cycle round are called recurring digital invariants (RDI).

Squares

The only numbers that sum to themselves are I 10100 etc.
Between I and 100 there are 20 numbers that eventually sum to I
| 7 IO |3 |9 $23283 \mid 3244496870798286$ 9| 9497 I00
eg $23 \Rightarrow 2^{2}+3^{2}=\left.13 \Rightarrow\right|^{2}+3^{2}=\left.10 \Rightarrow\right|^{2}=1$ end
All other numbers between I and IOO end up in the cycle
$4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89 \rightarrow \mid 45 \rightarrow 42 \rightarrow 20 \rightarrow 4$

Cubes

There are 4 PDIs - I53, 37 I, 370 and 407
$153=\left.\right|^{3}+5^{3}+3^{3}=15337\left|\Rightarrow 3^{3}+7^{3}+\right|^{3}=371$
$370=3^{3}+7^{3}+0^{3}=370407 \Rightarrow 4^{3}+0^{3}+7^{3}=407$
Between I and I00 there are 33, 28 I3 and 5 numbers respectively end up at one of these 4 numbers.

There are two 2-stage RDIs $-352 \rightarrow 160 \rightarrow 352$ and $1459 \rightarrow 9|9 \rightarrow| 459$.
Five and two numbers between I and 100 end here.
A third one is $136 \rightarrow 244 \rightarrow \mid 36$ which I missed as nothing smaller cycles in to this.

I found one 3 -stage RDI I $33 \rightarrow 55 \rightarrow 250$ which II numbers under 100 feed into.
These are all the cubic PDIs and RDIs that exist.

Quartics

There are 2 PDIs - I634 and 8208.
4 numbers that cycle into 8208 are 12, 17, 21 and 71 .
I found two RDIs namely $6514 \rightarrow 2178 \rightarrow 6514$ and
| 3 | $39 \rightarrow 6725 \rightarrow 4338 \rightarrow 45 \mid 4 \rightarrow$ | $38 \rightarrow 4179 \rightarrow 9219 \rightarrow$ |3|39
I believe this exhausts all possibilities.

Robert Goodhand
II ${ }^{\text {th }}$ November 2019

