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Preface 

When I first started to investigate this around 1996 there was barely a commercial internet 

much less anything mathematical on it.  What little information I had on the prime counting 

function (n) only extended to about 106. 

Nowadays – 2020 – there is a wealth of information available, about 10% readable but 

boring and the remaining 90% unintelligible. 

This booklet is a concise and comprehensible summary of the salient information 

surrounding the prime number theorem and includes my own conjecture to improve 

significantly on n / ln (n) but still only using an elementary function. 



Definition of a Prime 

Primes are the building blocks of all 

numbers, the individual numbers that 

multiply together to produce any given 

number n.   

eg 60 = 2 × 2 × 3 × 5 

Historically “1” has been considered a 

prime number. 

From about the start of the 20th 

century “1” has been excluded and 

treated as a special case. To compound 

confusion “2” is also considered 

somehow “an exception”.   

I therefore adopt “Goodhand’s” 

definition of a prime.  

“A prime number has exactly two divisors” 

and consequently there is now no need 

to treat “1” and “2” separately. 

The Prime Counting Function p(n) 

(n) represents the number of primes 

up to an including n.   

eg  (10) = 4  (ie 2, 3, 5, 7) 

The objective is to determine an 

expression that might approximate(n) 

without actually having to determine all 

the primes up to n.   

In short what is the density of primes 

up to any given value of n and what is 

the approximate value of the nth prime? 

The Prime Number Theorem 

Gauss used to be considered the 

greatest mathematician ever.  He added 

up the number 1 to 100 in seconds on 

his first day at school and never tired in 

later life telling people the story.  He 

has more recently been dislodged by 

Riemann but both men “cut their 

teeth” on the same problem – deducing 

an approximation for (n). 

Around 1892, when Gauss was 15, he 

had a book of log tables that gave 

primes probably up to about 10000. So 

he quickly counted up to note  

(10) = 4, (100) = 25,  (1000) = 168 

and (10 000) = 1229. 

He then determined the prime 

densities approximated to 1/ln (n) and 

presumably constructed the following 

table 

n  (n) density  1/ln (n) error 

10  4  40%  0.434 -9% 

100 25  25%  0.217 +13% 

1000 168 16.8%  0.145 +14% 

10000 1229 12.29% 0.109 +12% 

and could probably see thereafter that 

the percentage error kept dropping. 

This can be reformulated in three ways. 



Using ~ to mean “tends to” 

 nth prime  ~ n ln (n) 

 (n)  ~ n / ln (n) 

and critically (n) / n / ln (n)  1 as n   

This is the prime number theorem. 

Developments of n / ln (n) 

The ratio n / ln (n) gives values that are 

not quite large enough so Legendre 

proposed around 1797 that a bit of 

tinkering might fix the problem. 

He postulated that 

 (n) = 1 / A ln (n) + B 

A was soon determined to be “1” but 

the value of B was termed Legendre’s 

Constant.  Legendre gave a value of  

  B ≈ 1.08366 … 

Now with reference to the enclosed 

table it can be seen how Legendre 

came upon this number. Values are 

given in the 13th column.  The least 

error occurs at  

 n ≈ 100 000  

which is probably the highest value for 

which he knew (n). Thereafter the 

error using B peaks at about n = 1014 

which was well beyond the calculating 

power of the late 18th century.  

Chebyshev proved in 1849 that if the 

limit exists then B = 1. 

ie (n) = 1 / ln (n) + 1 

Even with present computing power 

(n) is only known exactly to n = 1027. 

Legendre’s formula still beats 

Chebyshev so it was an impressive stab 

at the problem. Presumably at much 

higher values of n, Chebyshev will 

improve on Legendre. 

The Logarithmic Integral li (n)  

Around 1811 Gauss was acknowledging 

he was working on the li (n) function 

where 

li (n) = n=0∫
 dt/t such that  

  (n) ~ li (n)  

and was a big improvement on  

  (n) ~ n/ln (n) 

This is clear with reference to the 

enclosed table.  Although the absolute 

error of li (n) – (n) appears to grow 

without limit its relative error 

approaches zero. ( see Skewes number ) 

On the enclosed table I used the 

infinite series to the first 20 terms to 

calculate 

li (n) =  + ln (ln (n)) + (ln n)/1.1! + (ln n)²/2.2! 

      + (ln n)³/3.3! … 

for the first 4 rows of the 7th column. 

 is the Euler- Mascheroni constant. 



Thereafter the series converges too 

slowly to be of use and I actually 

derived li (n) from the offset integral. 

Then from 1018 I actually entered  

  li (n) – (n) directly and deduced 

li (n) from that value. 

The limitation of Excel to 15 significant 

figures and floating point decimal also 

presented problems.  

All this admittedly was a bit “cart before 

the horse” but the principle had been 

demonstrated. 

The Logarithmic Integral Li (n) 

There is a minor technical problem 

with li (n) which has a singularity at  

   n ≈1.451. 

To avoid this Cauchy proposed the 

offset logarithmic interval 

  n=2∫
 dt/t 

Thus Li (n) = li (n) – li (2). 

Though the difference is miniscule  

Li (n) is also a better approximation to 

(n). From row 5, I directly calculated 

Li (n) from the expression 

Li (n) = n/ln (n) { 1 + 1!/ln(1)+ 2!/ln(2) + 3!/ln(3) 

… } to 20 terms. 

The Riemann Hypothesis 

The unsolved  problem in Mathematics 

is RH which states  

“the Riemann zeta function has its zeros 

only at the negative even integers and 

complex numbers with real part ½”. 

The zeta function is  

(s) = n=1
 1/n^s = 1/1^s + 1/2^s + 1/3^s … 

This relates to the prime number 

theorem because Euler recast this 

function in terms of primes. 

(s) = p prime 1/1–p^–s  

  = (1/1–2^–s) . (
1/1–3^–s) . (

1/1–5^–s)… 

using a process similar to unique 

factorisation.   

The zeta function thus directly 

connects to primes.  Next we extend 

the function to s complex.  This means 

that through “complex analysis” 

information on the properties of the 

function are determined by the zero 

values. 

The upshot is the proof of this 

hypothesis sets boundary conditions on 

the maximum absolute value of  

(n) – Li (n) in terms of n. 

That is as accessible as I can make it. 



Skewes Number 

Li (n) appears consistently to over-

estimate (n).  However in 1933 

Skewes by assuming the truth of the 

Riemann Hypothesis proved that  

  (n) < Li (n)  

is violated for some value  

  n < 10^10^10^34.   

That is the value Li (n) eventually drops 

below (n) but at an incomprehensibly 

high number.   

It has been also been shown that Li (n) 

crosses (n) an infinite number of 

times.  Therefore it is pointless trying 

to tweak Li (n) and it just remains to 

determine how the error of Li (n) in 

determining (n) behaves. 

From the nineteen fifties onwards the 

Guinness Book of Records would give 

Skewes number as the highest number 

derived naturally from a mathematical 

calculation. That original estimate of 

Skewes has now been reduced to 

around 10316 still assuming the truth of 

RH.  The value reduces as more zeros 

are identified on the critical line. 

As there are only 1079 protons in the 

Universe no computer will ever be able 

to calculate this exactly

Goodhand’s Conjecture 

The problem with li (n) and Li (n) is 

that they cannot be expressed by an 

elementary expression. 

However on constructing a table of 

functional values I noticed that 

The error in the approximation of   

 n / ln(n) to (n)  

  is approximately equal to (n) / n 

This can be seen by comparing column 

3 with column 5 

I therefore equated these two 

expressions, rearranged to a quadratic 

and solved to produce the elementary 

expression 

(n) ≈ ½n { 1–√( 1 – 4/ln(n) ) } 

It can be seen that this expression 

considerably improves on Legendre, 

Cauchy and consequently Gauss’s 

original determination of the prime 

number theorem but disappointingly 

not Li (n). 

Despite an extensive internet search 

and queries on Maths websites I can 

find no reference to this so I claim this 

conjecture as mine. 



Further Concepts  

Prime numbers at first sight seem to 

occur almost at random.  Like Bristol 

buses you wait ages for one and then 

you’ll get two in quick succession. 

Euclid showed that the number of 

primes is infinite. 

Then there is the concept of twin 

primes. However it is only conjectured 

that the number of twin primes is 

infinite. This remains one of the most 

elusive unsolved problems in number 

theory.  

However even though both may be 

“infinite” there is still a difference in 

“magnitude”. 

The summation of the inverse of 

primes is also infinite but the 

summation of the inverse of twin 

primes is approximately 1.90216054 

This is known as Brun’s constant.   

Both the concept and the calculation of 

this does defy comprehension. (although 

I can sort of see how it could come about 

if the spacing between twins gets larger 

than the next decimal place) 

Final Comments 

As previously stated primes are the 

building blocks of all numbers.  The 

Fundamental Theorem of Arithmetic 

states that any number’s decomposition 

into primes is unique. 

So if the behaviour of primes can be 

securely nailed down then a massive 

raft of unproved conjectures become 

proven.   

In fact it is now often assumed at the 

beginning of a partial proof 

“given the truth of RH then …”. 

The smart money is that RH is 

definitely true.  However that still 

leaves open the question of whether it 

is provable. 

Truth and provability are definitely not 

the same.  There exist theorems which 

can be assumed either to be true or 

false strictly within the axioms of 

mathematics and the totality will still be 

consistent but not provable. 
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 Conditional Probability and Bayes Theorem 
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 Hypercomplex Numbers 

Instead of making i2 = –1 as in complex numbers what if we just make i2 = 1 

 Propositional Calculus 
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 The Harmonic Triangle 

How investigating harmonic triangles led to the discovery of a universal series 

summation formula 

 

 


