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Preface 

MS Word supplies over 10 000 characters ranging from the sublime to the ridiculous 

but not those key expressions required in statistics.  x̄ is in Arial Unicode and looks 

reasonable but capital x ie X is undersized. In both cases Word then shifts open the 

line spacing. 

Placing a circumflex above a Greek letter is all but impossible – the best I could 

realise was ^. 

Determined not to use equation editor a definite integral between a and b is a∫
b and 

the result in square brackets is [ some f(x)]a
b. Where the limits have suffixes the 

result looks a bit clumsy x1∫
x2

. 

Robert Goodhand 

  



Basic Definitions 

Mean   x ̄ = 1/n i=1∑
n xi 

or more simply just x̄ = 1/n ∑
 xi  

For ungrouped data x ̄ = ∑ f(x) / ∑ f 

for grouped date we can only estimate 

the mean by taking the midpoint of 

each interval to represent that interval 

midpoint = ½ (lower class boundary 

  + upper class boundary) 

so statistically we do live in a classless 

society! 

Range 

range = highest value – lowest value 

ignoring correction factors. 

Mean Deviation 

mean deviation = ∑xi – x̄ / n 

and for a frequency distribution 

mean deviation = ∑fi ( xi – x ̄ / ∑ fi 

This measure is not widely used. 

Standard Deviation 

s = √{ ∑ ( xi – x̄ )² / n} 

Variance 

variance = (standard deviation)² 

s²  = 1/n ∑ (xi – x̄ )² 

= 1/n ∑ ( xi² + x̄² – 2 xi x ̅)  

= 1/n ( ∑ xi² + ∑ x̄² – 2 x̄ ∑xi ) 

= ∑ xi² / n + ∑ x̄² / n – 2 x̄ ∑xi / n 

= ∑ xi² / n + x̄² – 2 x̅² 

Hence we derive the key relationship 

s²  =  ∑ xi² / n – x ̄² 

Worked Example 

Find the mean and standard deviation 

of the first n integers 

x̅  = 1/n ∑ xi 

 = 1/n ½ n (n+1) 

 = ½ (n+1) 

This result is used when determining 

the midpoint term of n terms 

s²  =  ∑ xi² / n – x ̄² 

= 1/6 n (n+1)(2n+1) / n – [½(n+1)]² 

which reduces to  1/12 (n² – 1) 

Scaling 

If each number in a data set in 

increased by a constant c then 

x̅n = x0̅ + c but 

sn = s0 

so adding c affects the mean but leaves 

the standard deviation unchanged 



If each number in the data set is 

multiplied by constant a 

x ̄n = a x̄0 so 

sn = a s0 

To summarise if 

y = ax + b then 

y ̄ = a x̄ + b 

sy = a sx 

Coding 

if y = (x – a) / b 

x = a + by 

x ̄ = a + b y ̄ 

sx = bsy 

Interquartile Range (IQR) 

IQR = Q3 – Q1 

On a normal distribution this occurs at 

approximately  2/3 s 

Q1 = ¼ (n + 1)th value 

Q3 = ¾ (n + 1)th value 

Semi Interquartile Range  

SIQR = ½ (Q3 – Q1) 

Median 

The median value is the ½ (n+1)th 

observation. 

Histograms 

Frequency density  

  = frequency / class 

width 

if the intervals are of equal width 

height “bar” = frequency 

if the intervals are of unequal width 

height “bar” = frequency density 

and finally note that area  frequency 

Skew 

For positive skew in general 

mode ‹ median ‹ mean 

For negative skew in general 

mode › median › mean 

Principle comparators are mode and 

mean 

Coefficient of Skew 

mean – mode ≈ 3 (mean – median) 

which leads to 

Pearson’s coefficient  

= 3 (mean – median) / std. deviation 

= (mean – mode) / std. deviation 

The quartile coefficient of skew is given 

by {(Q3 – Q2) – (Q2 – Q1)} / (Q3 – Q1) 

Outliers 

Outliers are defined as values that lie 

more than 3/2 (Q3 – Q1)  

above Q3 or below Q1 



For a normal distribution this 

approximates to 2 2/3 × std. dev. 

Chebychev’s Theorems 

1) The mean and median cannot differ 

by more than one standard deviation.  

This sets the coefficient of skew 

measure at  3 

2) For ANY distribution the proportion 

of the population that lies outside k 

standard deviations is less than 1/k² 

This sets the boundary condition for 

any unknown distribution. 

In probabilistic terms we say 

Pr (X –  )  k  1/k²   

where s is the population std. dev. 

Arrangements 

Number of ways of arranging n unlike 

objects in a line is n! 

Number of ways of arranging n objects 

of which p are alike is n! / p! 

Number of ways of arranging n objects 

of which p are of one type, q are of 

another type etc. is n! / p! q! … 

Number of ways of arranging n unlike 

objects in a ring where 

clockwise/anticlockwise are taken as 

different arrangements is (n – 1)! 

Number of ways of arranging n unlike 

objects in a ring where 

clockwise/anticlockwise are taken as 

the same arrangement is ½ (n – 1)! 

Permutations 

Permutations are ordered subsets 
nPr = n! / (n – r)! 

Combinations 

Combinations are unordered subsets 
nCr = n! / (n – r)! r! 

Probability Distributions 

we use capital letters to represent the 

variable X 

Discrete Random Variables (drv) 

we use lower case letters to represent 

specific discrete values that the variable 

X can take 

x1, x2, x3, …xn 

with probabilities of occurrence as 

p1, p2, p3, …pn 

X is defined as a discrete random 

variable if and only if 

p1 + p2 + p3 + … pn = 1  

∑ pi = 1 where i = 1, 2, 3, … n 

all x∑ P (X=x) = 1 

The function that allocates the 

probabilities is termed the probability 

density function (pdf). 



Expectation 

The expectation of expected value is 

defined as 

E(X) = all x∑xP(X=x) or ∑xiPi 

For symmetrical or uniform 

distributions E(X) is the midpoint value. 

The concept can be extended to any 

function of the random variable. 

Let g(X) be any function 

E[g(X)] = all x∑ g(x) P(X=x) 

This relationship has the following 

colloraries 

Cor1:  E(a) = a 

Cor.2:  E(aX) = a E(X) 

Cor.3  E(aX+b) = aE(X) + b 

Cor.4   

 E(f1(X)+f2(X) = E[f1(x)]+E[f2x] 

or simply E(X+Y) = E(X) + E(Y) 

X and Y need not be independent. 

Variance 

Taking the experimental approach 

For a frequency distribution with mean 

x ̄ and variance s² where  

s² = ∑ f (x– x̄)² / ∑f 

which can be written as 

s² = ∑ f x² / ∑f – x̄² 

Taking the theoretical approach 

For a discrete random variable X with 

E(X) =  the variable is defined as 

Var (X) = E (X–)² = E(X²) – ² 

By convention we write this as 

Var (X) = E(X²) – E²(X)  pretty neat 

Cor1:  Var (a) = 0 

Cor.2:  Var (aX) = a² Var(X) 

Cor.3 Var(aX + b) = a² Var(X) 

where a and b are any constants. 

Cumulative Distribution Function  

Let X be a drv with P(X=x) 

then the cdr is given by 

F(t) = P(X  t) = x1∑
t P(X=x) 

t = x1, x2, x3, …xn 

Worked example 

X is the score from an unbiased die 

F(t) = t/6 where t = 1, 2, 3, 4, 5, 6 

It is not necessary that there be a 

specific formula for the cdf. 

Two Random Variable 

For X and Y independent 

Var (X+Y) = Var (X) + Var (Y) 

E(aX+bY) = aE(X) + bE(Y) but 

Var (aXbY) = a²E(X)  b²E(Y). 

If X1 and X2 are independent 

observations from distribution X then 

E(X1 + X2 ) = 2 E(X) 

Var (X1 + X2 ) = 2 Var(X) 

For n independent observations 



E(X1+X2+X3…Xn) = nE(X) and 

Var(X1+X2+X3…Xn) = nVar(X) 

In any problem we need to think 

carefully about whether we are 

investigating multiples or sums.  

Multiples    Sums 

E(2X) = 2E(X)    E(X1+X2) = 2E(X) 

Var(2X) = 4E(X)   Var(X1+X2) = 2Var(X) 

and the relationship n measurements 

follows on. 

The Binomial Distribution 

Where we conduct n independent trials 

and p is the probability of success in the 

outcome of any one trial 

X ~ Bin(n,p) 

P(X=x) = nCxp
xqn–x where p+ q = 1 

P(X=x) is thus given by the binomial 

expansion 

(p+q)n = nC0p
0qn+nC1p

1qn–1 + 

…   + nCrp
rqn–r +…+ nCnp

nq0 

Hence the following relationships apply 

E(X) = np 

Var (X) = npq 

P(X=rX~Bin(n,p)  

 has the same value as 

P(X=n–rX~Bin(n,1–p)) 

For cumulative distributions 

P(XrX~Bin(n,p) ) 

 has the same value as 

P(Xn–rX~Bin(n,1–p)) 

The mode is the highest value term in 

the binomial expansion. 

Geometric Distribution 

Consider performing a number of 

independent trials with constant 

probability of success and q of failure 

(p+q)=1 we define 

X ~ Geo(p) 

where the drv X has pdf of the form 

P(X=x) = qx–1p 

Cor.1 P(X › x) = qx–1p 

Cor,2  P[(X › a+b)(x › a)] = P(X › b) 

If X~Geo(p) then  

E(X) = 1/p and 

Var (X) = q/p² 

The Poisson Distribution 

If an event is randomly scattered in 

time or space and has a mean number 

of occurrences  in a given interval and 

X is the random variable  

“the number of occurrences” 

then X~Po() and 

P(X=x) = e–x/x! 

x = 0, 1, 2, 3, …∞ and l  R+ 

we know e = 1 + + ²/2! … 

then clearly ∑Pi = e–l × el = 1 

so we have a valid pdf. 



In general we define 

E(X) = all x∑xP(X=x) 

so where X~Po() 

E(X) = 0×e–0/0! + 1×e–1/1! 

 +2×e–2/2! + 3×e–3/3! … 

 = e– (1++²/2!+3/3! …) 

E(X) = (ie the mean) 

Var (X) = E (X²) –E²(X) 

It can be shown E(X²) =  + ² 

Var (X) = + ² – ² = 

(ie both mean and  variance are ) 

The Poisson distribution approximates 

to the Binomial distribution under 

certain conditions 

If X~Bin(n,p) 

P(X=x) = nCxp
xqn–x 

Now p = /n q = 1 – /n 

so P(X=x)  = nCx(
/n)

x(1– /n)
n–x 

  = {nCx/n
x} x (1– /n)

n–x 

which we wish to equate to 1/x! xe– 

For large n (1– /n)
n–x ≈ e–

and nCx / n
x ≈ 1/x! 

and hence the approximation is valid 

 

Examples for n = 100 p = 0.01  = 1 

x P(X=x)~Bin(n,p) P(X=x)~Po() 

0 0.3660  0.3697 

1 0.3697  0.3697 

2 0.1849  0.1839 

3 0.0160  0.0613 

4 0.0149  0.0153 

which is close agreement 

Examples for n = 50 p = 0.1  = 5 

x P(X=x)~Bin(n,p)

 P(X=x)~Po() 

0 0.00515  0.00674 

1 0.0286  0.0337 

2 0.0779  0.0842 

3 0.139  0.140 

4 0.181  0.175 

which isn’t quite so close 

One must also question whether all this 

is quite so relevant with modern 

computing power. 

Mode of Poisson Distribution 

The mode is the value most likely to 

occur, that is the one with the highest 

probability.  If  is an integer the 

distribution is bimodal with modes at 

x = – 1 and x = l 

This can readily be seen from Poisson 

tables. 

If  is not an integer then the mode m 

occurs at – 1 ‹ m ‹ l 



Two Independent Variables 

If X~ Po (m) 

and Y = Po(n) 

then X + Y ~ Po (m+n) 

Probability Distributions 

A continuous random variable is a 

theoretical representation of a 

continuous variable such as height, 

mass or time. 

A continuous random variable is 

specified by its probability density 

function f(x). 

The pdf is represented by a “curve” and 

the probabilities are the areas under 

the curve. 

We are therefore concerned with 

some particular range and we discount 

any difference between say  and ‹. 

all x∫f(x) dx = 1 

P(x1 X x2) = x1∫
x2 f(x) dx 

Mean 

E(X) = all x∫f(x) dx = . 

If f(x) is symmetrical then  will be the 

x-value on the line of symmetry. 

E[g(x)] = all x∫ g(x) f(x) dx 

E[X²] = all x∫ x² f(x) dx 

Cor.1  E(a) = a 

Cor.2 E(aX) = a E(x) 

Cor.3 E(aX+b) = aE(x) + b 

Cor.4 E[f1(X)+f2(X)] 

  = E[f1(x)] + E[f2(x)] 

Variance 

If X is a continuous random variable 

with probability density function f(x) 

then 

Var(X) = all x ∫x² f(x) dx – ²  

where  = E(X) = all x∫ x f(x) dx 

Standard Deviation 

 = √{Var (X)} 

Cor.1 Var(a) = 0 

Cor.2 Var(aX) = a²Var(X) 

Cor.3 Var(aX+b) = a²Var(x) 

Mode 

The mode is the value of X for which 

f(x) is a maximum. 

Cumulative Distribution Function 

If X is a continuous random variable 

with probability density function f(x) 

defined for a  x  b 

then the cumulative distribution 

function is given by 

F(t) = P(X  t) = a∫
t f(x) dx 

a and /or b may be –∞ to +∞ 

P(x1  X  x2) = F(x2) – F(x1) 

Median 

The median splits the curve into two 

equal area halves 

so a∫
m f(x) dx = 0.5 or simply F(m) = 0.5 



Relationship pdf to cdf 

f(x) = d/dx F(x) = F´ (x) 

ie the gradient of F(x) gives the value 

f(x) 

Rectangular Distribution 

The distribution has constant height  
1/b–a between values a and b giving an 

area of 1. 

So f(x) = 1/b – a for a  x  b 

X ~ R (a,b) 

Hence all x∫ f(x) dx = a∫
b 1/b – a dx 

If X ~ R (a,b) then 

E(X) = ½ (a+b) 

Var (X) = 1/12 (b – a)² deduced earlier 

E(X²) = 1/3 (b² + ab + a²) 

Exponential Distribution 

A continuous random variable X having 

probability density function f(x) where 

f(x) = e–x 

is said to be an exponential distribution. 

all x∫ f(x) dx = 0∫
∞e–x dx 

= – [ e–x ]0
∞ = e–∞ + e0 = 1 

P(X ‹ a) = 0∫
a e–x dx 

= –[ e–x ]0
a = – e–x + e0  

Hence P(X ‹ a) = 1 – e–a 

and P(X › a) = e–a 

F(x) = P(X  x) =  1 – e–x for x  0 

Also P( (X › a+b) ( X › b) = P( X › b) 

E(X) = 1/ 

Var (X) = 1/² 

E(X²) = 2/² 

The waiting times between successive 

events in a Poisson distribution follow 

an exponential distribution. 

Median 

Let the median lie at x = m 

F(m) = 0.5 = 1–e–m 

so em = 2 and hence m = ln 2 /  

The Normal Distribution 

A continuous variable X having pdf f(x) 

where  

f(x) = 1/√2e
–(x–)²/2² 

has a normal distribution and we write 

X ~ N (,²) 

E(X) =  

Var (X) = ² 

Proof 

E(X) = all x∫ x f(x) dx 

= 1/√2–∞∫∞
xe–(x–)²/2²dx 

let t = x – /s 

x = t +  
dx/dt = 

E(X)= 1/√2–∞∫∞
+t)e–½ t²dt

= /√(2 –∞∫∞e–½ t²dt + /√(2 –∞∫∞te–½ t²dt 

 =  + /2 [e
–½ t²]–∞

∞ 

Here I assume 1/√(2 –∞∫∞e–½ t²dt = 1  



E(X) =  

A similar extended proof will show 

Var (X) = ² 

If X ~ N(,²) the maximum value  f(x) 

occurs at x =  and f(x) has points of 

inflexion at x =   

Standardised Normal Variable Z 

Z ~ N (0 , 1) 

Tables give cumulative probabilities – 

that is areas under the curve. 

The symbol for cumulative probability 

is (z) (pronounced phi) 

so  (z) = P(Z ‹ z) 

if X ~ N(, ²) 

and Z = X –  /  

then Z ~ N (0,1) 

So we have standardised the variable so 

we only need one universal table. 

If Z = (X – ) /  

then X =  + Z 

Approximation Normal to Binomial 

if X ~ Bin (n,p) with n  50 and p ≈ 0.5 

then X ~ N (np, npq) 

The greater n the more flexibility on p. 

Approximation Normal to Poisson 

if X ~ Po () 

then E(X) =  

Var(X) =  

for › 20  X ~ N () 

Random Variables and Sampling 

Let X and Y be two independent 

normal variables. 

X ~ N (1, 1²) 

Y ~ N (2, 2²) 

then 

X + Y ~ N (1 + 2, 1² + 2²) 

X – Y = N (1 – 2, 1²+2²) 

and this may be extended to any 

number of normal independent 

variables. 

Now take the special case where  

X1, X2 , X3 … Xn are independent 

observations from same normal 

distribution 

Xi ~ N (, ²) i = 1, 2, 3, …n then 

X1 + X2 + X3 + … Xn ~ N (n,n²). 

Remembering if X is a normal variable 

X ~ N ( , ²) then 

aX ~ N (a , a²²) 

and it therefore must follow that 

aX  bY ~ N (a1   b2, a²1² + b²2²)  

The Sample Mean 

Let X1, X2, X3, …Xn be a random 

sample of n independent observations 

from a population mean  variance ². 



Consider the sample mean X 

X = 1/n(X1 + X2 + X3 + …Xn) 

= 1/n ∑Xi  i = 1, 2, 3, …n 

∑( X ) = E[ 1/n(X1 + X2 + X3 +…Xn)] 

= 1/n [E(X1) + E(X2) …E(Xn)] 

= 1/n (n) 

=  

Var( X ) = Var[ 1/n(X1 + X2 + X3 +…Xn)] 

= 1/n² [Var(X1)+Var(X2) …Var(Xn)] 

= 1/n² (n²) 

Var (X ) = ²/n 

If we sample without replacement 

E(X ) =   

Var (X) = ²/n (
N – n/N – 1) 

To summarise if we take a random 

sample of n items from a normal 

distribution then 

X ~ N (, ²/n) 

This is a key result which has even 

wider implications because under the 

Central Limit Theorem the distribution 

can be of any form and still the 

standard deviation of X is  
/√n and is termed the standard error. 

Distribution of the Sample Proportion 

Consider a population in which the 

proportion of successes is p. If the 

random sample size is n and X is the 

random variable “number of successes” 

then X ~ Bin(n,p). 

If n is large ( say n  50) 

X ~ N (np, npq) 

Let Ps be the proportion of successes 

Ps = X/n 

E(Ps) = E (X/n) 

= 1/n E(X) 

= 1/n (np) 

=p 

Var(Ps) = Var (X/n) 

= 1/n²Var(X) 

= 1/n² (npq) 

= pq / n 

Therefore Ps ~ N (p, pq/n) 

Estimation  Population Parameters 

Distribution  Parameter 

discrete 

Binomial  n and p 

Poisson    

Geometric  P 

continuous 

Rectangular  a and b 

Exponential   

Normal   and ² 

If the parameters are unknown we take 

a sample from the population and use 

that to make estimates. 

This statistic is called an ESTIMATOR 



(U,T etc). 

The numerical value in any particular 

instance is called an ESTIMATE (u,t). 

Consider a population with unknown 

parameter 

If U is some statistic derived from a 

random sample taken from the 

popuation, then U is an unbiased 

estimator for  if 

E(U) =  

The most efficient estimator is the one 

which is unbiased and has the smallest 

variance.   

The three important population 

parameters are mean, variance and 

proportion (“successes”) 

Parameter  Symbol  Estimator 

mean     ^ 

variance  s²  ^² 

proportion p  p^ 

Parameter  Estimator Estimate 

mean   X  x ̄ 

variance  S²  s² 

proportion Ps  ps 

For mean  ^ = X 

as E(X ) =  the estimate is unbiased. 

For variance  

^²    = nS²/n–1 = 1/n–1 ∑(X – X)² 

For proportion 

p^ = Ps 

as E(Ps) = p    and estimate is unbiased. 

Pooled Estimators 

  Size Mean  Var. 

sample 1 n1 X1   S1² 

sample 2 n2 X2 S2² 

^ = {n1 X1+n2 X2} / {n1 + n2} 

This calculation is exact for any set of 

figures representing sample 1 and 

sample 2. 

^² = {n1S1² + n2S2²} / {n1 + n2 – 2} 

This calculation however is dependent 

on the assumption that the samples are 

drawn from the same parent 

population. 

  Size Proportion 

sample 1 n1 Ps1 

sample 2 n2 Ps2 

p^ = {n1Ps1+n2Ps2} / {n1 + n2} 

 one sample two sample 

^ X {n1 X1+n2 X2} / {n1+ n2} 

s^² n/n–1S² {n1S1²+n2S2²}/{n1+n2–2} 

p^ Ps  {n1P1²+n2P2²}/{n1+n2} 



Interval Estimation 

An interval estimation of an unknown 

population parameter is an interval 

constructed so that it has a given 

probability of including the parameter 

eg P(a ‹  ‹ b) = 0.95 

is termed  

the 95% confidence interval for . 

What it is not is the probability that  

lies in the interval because it is  that is 

fixed – albeit unknown – and the 

interval that varies. 

There are three cases to consider 

Case 1 

Find the confidence interval for  when 

the variance ² is known. 

If X ~ N (n, ²) 

then for any n 

X ~ N ( , ²/n ) 

If we do not know if X follows a 

normal distribution then we need  

n › 30. We then standardise 

Z = {X – } / {/√n} 

so Z ~ N (0,1) 

For 95% confidence we set 1.96.   

So P(X – 1.96 s/√n    X + 1.96 s/√n 

or in brief we write  

95% confidence interval is x ̄  1.96 /√n 

Case 2 

Find the confidence interval for  when 

the variance ² is unknown. 

So first we have to generate an 

estimate for ^² 

^²  = n/n – 1 S²  (sample variance) 

 = ∑(x – x̄)² / (n – 1) 

95% confidence interval is  

x ̄  1.96 ^/ √n 

Case 3 

Confidence interval for p is 

Ps  1.96 √(psqs/n) 

so we don’t have any prior knowledge 

of the parent population, the trade off 

being we require n large – say n › 30. 

Significance Testing 

The relevant standard deviations for 

given confidence limits are  

      One Tailed      Two Tailed 

90%  1.28  1.64 

95%  1.64  1.96 

99%  2.33  2.58 

99.5%  2.58  2.91 

1 sd includes 84.1%  68.3% 

2 sd includes 97.7%  95.5% 

3 sd includes 99.9%  99.7% 

 



Cumulative Distribution Function (z) – (0) =  /√(2 0∫
ze–½ t²dt (ie one tailed) 

Z   0.00   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09 

0.00 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.10 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.20 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.30 0.1179 0.11217 0.11255 0.11293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 

0.40 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.50 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.60 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.70 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.80 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.90 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.365 0.3389 

1.00 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.10 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.20 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 

1.30 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

1.40 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 

1.50 0.4332 0.4354 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 

1.60 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 

1.70 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 

1.80 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 

1.90 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 

2.00 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 

2.10 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 

2.20 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 

2.30 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 

2.40 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 

2.50 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 

2.60 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 

2.70 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 

2.80 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 

2.90 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 

3.00 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 

3.10 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993 

3.20 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995 

3.30 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997 

3.40 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 

3.50 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 
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