Godel's Proof of the Existence of God

		////201	
Axiom I	$\Box \forall x [\phi(x) \rightarrow \psi(x)] \land P(\phi) \rightarrow P(\psi)$	Ρ(φ)	φ is
Axiom 2	$P(\neg \phi) \leftrightarrow \neg P(\phi)$	G(x)	'x'
Theorem I	$P(\phi) \to \Diamond \exists x \ [\ \phi(x) \]$		a n
Defn. I	$G(x) \Leftrightarrow \forall \phi [P(\phi) \rightarrow \phi(x)]$	\diamond	a co
Axiom 3	P(G)	\rightarrow	imp
Theorem 2	♦∃×G(x)	\forall	for
Defn. 2	$\phi \text{ ess } x \Leftrightarrow \phi(x) \land \forall \Psi \{ \Psi(x) \to \Box \forall x [\phi(x) \to \Phi(x)] \}$	Э	the
Axiom 4	$P(\phi) \to \Box P(\phi)$	ess x	the
Theorem 3	$G(x) \rightarrow G ess x$	7	not
Defn. 3	$E(x) \Leftrightarrow \forall \ \phi \ [\ \phi \ \text{essx} \rightarrow \Box \ \exists \ x \ \phi(x) \]$	^	anc
Axiom 5	P(E)	\Leftrightarrow	if a
Theorem 4	$\Box \exists \mathbf{x} \mathbf{G}(\mathbf{x})$ (there exists x such that x has the property of being God)	P(E)	E is

Sy	ymbol	Meaning
	Ρ(φ)	ϕ is a positive property
	G(x)	'x' has the property of being God
		a necessary truth
	\diamond	a contingent truth
	\rightarrow	implies
	\forall	for all
	Э	there exists
	ess x	the essence of x
	٦	not
	Λ	and
	\Leftrightarrow	if and only if
God)	P(E)	E is a positive property

https://lincolnlad.weebly.com/

Ø