Mr G's Little Book on

Quantum

Numbers

Summary

In any atom of a specific atomic number

- the number of protons in the nucleus
- there is a unique pattern of orbiting electrons. Each electron has a specific "address" in the electron cloud defined by 4 quantum numbers.

Quantum Numbers

The first quantum numbers is \mathbf{n} a positive integer giving the overall relative energy of each orbital.

Electrons with the same n value are said to be in the same electron shell.
$\mathrm{n}=\mathrm{I}$ is called the K shell
$\mathrm{n}=2$ is called the L shell
$n=3$ is called the M shell
$\mathrm{n}=4$ is called the O shell etc.
The second quantum number is ℓ the azimuthal quantum number roughly the shape of the orbital.
\mathcal{C} can take the values 0 to $\mathrm{n}-\mathrm{I}$.
for $\mathrm{n}=\mathrm{I} \quad \ell=0$ called the s subshell
for $\mathrm{n}=2 \quad \ell=0$ called the s subshell and $\mathcal{C}=1$ called the p subshell
for $\mathrm{n}=3 \quad \ell=0$ called the s subshell and $\mathcal{C}=I$ called the p subshell and $\quad \mathcal{L}=2$ called the d subshell
for $\mathrm{n}=4 \quad \ell=0$ called the s subshell and $\mathcal{C}=\mathrm{I}$ called the p subshell and $\mathcal{L}=2$ called the d subshell and $\mathcal{C}=3$ called the f subshell While commonly thought stands for spherical and \mathbf{p} polar these letters derive from the original spectrograph investigations and stand for sharp, principal, diffuse and fundamental. These terms have little relevance now. Subsequent subshells are just labelled g for $\mathcal{C}=5$ and h for $\mathcal{C}=6$ though these do not occur naturally in nature.. Never let it be assumed these suborbitals can actually be seen. However by solving certain equations a probability density can be ascribed to each which may be interpreted as shape.

The third quantum number is m and roughly equates to the angular momentum vector - that is the orientation the sub-shell and can take The values can take $-\ell$ to $+\zeta$. For $\mathcal{C}=0 \mathrm{~m}=0$ and the s orbital is a sphere For $\mathcal{C}=1 \mathrm{~m}=-1,0$ or +1
and the three p orbitals are all figure of
eight paths, one along along each axis.
For $\mathcal{C}=2 \mathrm{~m}=-2,-1,0,+1$ or +2
Four of the five \mathbf{d} orbitals are clover leaf in shape and the fifth a figure of eight with a halo round the middle. This pattern continues although the shape of each \mathbf{f} suborbital becomes more complex.

The fourth quantum number is \mathbf{s}, the angular momentum of the electron and colloquially called "spin" though it should never be supposed that anything is actually spinning.

Spin down is defined as $-1 / 2$ and spin up as $+1 / 2$.

Electrons having the same first 3 quantum numbers will then usually pair up for the fourth though exceptions are detailed later.

Shell "Capacity"

No two electrons can have the same 4 quantum numbers so there is a theoretical maximum to the number of electrons in each shell.

K shell is Is and because there is only one m value maximum is

$$
(1) \times 2=2
$$

L shell is $2 s$ and $2 p$ and because there are $3 \mathbf{m}$ values maximum is

$$
(1+3) \times 2=8
$$

M shell is $3 \mathrm{~s}, 3 \mathrm{p}$ and 3 d and because there are $5 \mathbf{m}$ values maximum is

$$
(1+3+5) \times 2=18
$$

N shell is $4 s, 4 p, 4 d$ and $4 f$ and because there are $7 \mathbf{m}$ values maximum is

$$
(1+3+5+7) \times 2=32
$$

N shell is $5 \mathrm{~s}, 5 \mathrm{p}, 5 \mathrm{~d}, 5 \mathrm{f}$ and a theoretical 5 g . Because there are $7 \mathbf{m}$ values the theoretical maximum is

$$
(1+3+5+7+9) \times 2=50
$$

Although sub-orbital 5 g does not occur shells O, P and Q do occur to accommodate lower energy sub orbitals.

Maximum Practical Shell Size
The outer configuration of electrons largely determines the chemical properties of the element. The periodic table consists of columns and rows.

Columns are labelled as Groups I to 18 and contain similar outer electron configurations but in increasingly higher energy shells.

The rows are labelled Period-I through
to Period-7 each ending with an inert gas having the most stable outer configuration of $s^{2} p^{6}$ - that is 8 electrons called an octet

It is worth analysing the actual electron distribution for the inert gases.

Helium Total 2
K shell 2
Neon Total 10
K shell $2 \quad L$ shell 8
Argon Total 18
K shell $2 \quad L$ shell $8 \quad M$ shell 8
Krypton Total 36
K shell $2 L$ shell $8 \quad M$ shell 18
N shell 8
Xenon Total 54
K shell $2 L$ shell $8 \quad M$ shell 18
N shell 18 O shell 8

Radon Total 86
K shell 2 L shell 8 M shell 18
N shell 32 O shell 18 P shell 8

Oganessium Total II8

K shell $2 \quad L$ shell $8 \quad M$ shell 18
N shell 32 O shell 32 P shell 18
Q shell 8
So the maximum number electrons in any shell is 32

Aufbau Rules

In the ground state of an atom, electrons fill atomic orbitals of the lowest available energy level before occupying higher energy levels.

The increasing energy levels generally follow a specific pattern

Shell Q
Shell P
Shell O
Shell N
Shell M
Shell L
Shell K
giving the sequence as
$\mid s>2 s>2 p>3 s>3 p>4 s>3 d>4 p>5 s$ etc.

Exceptions to Aufbau Rules		Gadolinium is	[Xe] $6 s^{2} 4 f^{7} 5 d^{\prime}$
Electrons join sub orbitals from lowest		and not	[Xe] $6 s^{2} 4 f^{8} 5 \mathrm{~d}^{0}$
to highest energy levels but where two		Platinum is	[Xe] $6 s^{0} 4 f^{4} 5 d^{10}$
suborbitals have very similar energy		and not	[Xe] $6 s^{2} 4 f^{8} 5 d^{8}$
level electrons will join each in turn		Gold is	[Xe] $6 s^{1} 4 f^{14} 5 d^{10}$
before pairing up.		and not	[Xe] $6 s^{2} 4 f^{8} 5 d^{9}$
Thus at higher energy levels there is an		Actinium is	[Xe] $7 s^{2} 5 f^{0} 6 d^{1}$
increasing overlap between sublevels		and not	[Xe] $7 s^{2} 5 f^{\prime} 6 d^{0}$
leading to "exceptions" to the expected		Thorium is	[Xe] $7 s^{1} 5 f^{0} 6 d^{2}$
pattern. The author analysed these in		and not	[Xe] $7 s^{2} 5 f^{2} 6 d^{0}$
1990. The full chart is available as an		Protectinium is	[Xe] $7 s^{2} 5 f^{2} 6 d^{1}$
attachment to this booklet but the		and not	[Xe] $7 s^{2} 5 f^{3} 6 d^{0}$
exceptions are summarised here.		Uranium is	[Xe] $7 s^{2} 5 f^{3} 6 d^{\prime}$
Chromium isand not	[Ar] 4s ${ }^{1} 3 d^{5}$	and not	[Xe] $7 s^{2} 5 f^{4} 6 d^{0}$
	[Ar] $4 s^{2} 3 d^{4}$	Neprunium is	[Xe] $7 s^{2} 5 f^{4} 6 d^{1}$
Copper is	[Ar] 4s ${ }^{1} 3 \mathrm{~d}^{10}$	and not	[Xe] $7 s^{2} 5 f^{5} 6 d^{0}$
and not	[Ar] $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{9}$	Curium is	[Xe] $7 s^{2} 5 f^{7} 6 d^{1}$
Niobium is	[Kr] 5s ${ }^{1} 4 d^{4}$	and not	[Xe] $7 s^{2} 5 f^{8} 6 d^{0}$
and not	[Kr] 5s ${ }^{2} 4 \mathrm{~d}^{3}$	Most of these	ents you've never
Molybdenum is	[Kr] 5s ${ }^{1} 4 d^{5}$	heard of but o	might reflect that
and not	[Kr] 5s ${ }^{2} 4 \mathrm{~d}^{4}$	three elements,	iver, Gold and
Ruthenium is	[Kr] 5s ${ }^{1} 4 \mathrm{~d}^{7}$	Platinum, only exist because having set	
and not	[Kr] 5s ${ }^{2} 4 d^{6}$	up all the laws	the Universe
Rhodium is	[Kr] 5s ${ }^{1} 4 \mathrm{~d}^{8}$	someone decide that they then needed	
and not	[Kr] 5s ${ }^{2} 4 \mathrm{~d}^{7}$	to be adjusted.	
Palladium is	[Kr] 5s ${ }^{0} 4 \mathrm{~d}^{10}$		
and not	[Kr] 5s ${ }^{2} 4 \mathrm{~d}^{8}$		
Silver is	[Kr] 5s ${ }^{1} 4 \mathrm{~d}^{10}$		
and not	[Kr] 5s ${ }^{2} 4 \mathrm{~d}^{9}$		

- On My TI Calculator what's the difference between Sx and σx ? It's not what I thought for the first 40 years of the scientific calculator
- Beyond Pascal - Multinomials and Dice Throwing

How a lower set exercise in dice throwing led to the discovery of multinomials

- Conditional Probability and Bayes Theorem

An investigation into the pitfalls of medical screening

- Hypercomplex Numbers

Instead of making $i^{2}=-I$ as in complex numbers what if we just make $i^{2}=I$

- Propositional Calculus

Sherlock Holmes was the great inductive detective but not infallible

- The Harmonic Triangle

How investigating harmonic triangles led to the discovery of a universal series summation formula

Back Page

