Road Capacity

In some consistent set of units let
$\mathrm{v}=$ velocity car
$d_{v}=$ recommended stopping distance
between cars at speed v
$g=\quad$ length of car
$c_{v}=$ capacity road at velocity v
Now it is easily demonstrated that
$d_{v}=a v^{2}+b v$ where a and b are constants
in some defined and consistent set of units.
To determine the capacity of the road we thus assume a distance between cars of d_{v} plus the length of the car g.

Now consider the time it takes for one car to pass a fixed point at velocity v
$t_{v}=\left(a v^{2}+b v+g\right) / v$ and hence
$c_{v}=\quad v /\left(a v^{2}+b v+g\right)$
To determine the maximum value of this
function we equate $d c_{v} / d v$ to zero.
$d c_{v} / d v=$
$\left\{\left(a v^{2}+b v+g\right)-v(2 a v+b)\right\} /\left(a v^{2}+b v+g\right)^{2}$
Hence $\left(a v^{2}+b v+g\right)=v(2 a v+b)$
and rearranging we quickly deduce
$v_{\text {max }}=\sqrt{ }(g / a)$
which is a pretty neat result.
As an aside the term $\left(\mathrm{av}^{2}+\mathrm{bv}+\mathrm{g}\right)^{2}$ must always be positive so we avoid spurious results where $\mathrm{dc}_{\mathrm{v}} / \mathrm{dv} \rightarrow \infty$

Values of constants

Highway Code stopping distances are given as

mph	20	30	40	50	60
Thinking	20	30	40	50	60
Stopping	20	45	80	125	180

where distances are in feet ${ }^{\#}$.
Hence $\quad a=0.05$
and $\quad b=1$
though interestingly we don't need this value to determine $\mathrm{v}_{\text {max }}$

Assume $g=15$ feet
$v_{\text {max }}=\sqrt{ }(g / a)$
$\sqrt{ }(15 / 0.05)$
17.3 mph .

As a check if we use a graphical calculator to identify the maximum value of the function $v /\left(0.05 v^{2}+v+15\right)$ and use the conversion factor 88 feet $/ \mathrm{sec}=60 \mathrm{mph}$ we obtain again $v_{\text {max }}=17.3 \mathrm{mph}$ again

Maximum Capacity

Inserting $\sqrt{ }(\mathrm{g} / \mathrm{a})$ into the function for c_{v} we obtain $c_{v \max }=\sqrt{ }(g / a) /\{2 g+b \sqrt{ }(g / a)\}$ Inserting actual values and multiplying up to obtain maximum capacity / hour

$$
\begin{aligned}
c_{\mathrm{vmax}} & =60 \times 60 \times 17.3 /(2 \times 15+17.3) \\
& \approx 1300 / \text { hour }
\end{aligned}
$$

which seems a not unreasonable result.

Summary

As motorways start to "clog" the tactic is to reduce speed to increase capacity. However once a "local" speed drops below a critical value $\mathrm{v}_{\text {max }}$ queues will build up for no external valid reason. You join a queue, crawl for some period and then peel off the front. These queues move backwards slowly down the motorway.

[^0]
[^0]: \# an archaic form of measurement $=304.8 \mathrm{~mm} \bigcirc$

