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An Investigation into Series and the Harmonic Triangle 

Summary 

The author conducts a personal mathematical investigation every school holiday. 

Christmas 2012 investigation was to find the general solution for  

r=1r=n  1/r ( r + 1 ) ( r + 2 ) ( r + 3 ) … ( r + k ) 

Initially I was unable to make substantial progress so as a diversion I investigated 

the Leibnitz’s Harmonic triangle.  In a truly serendipitous moment the solution 

suddenly dropped out of that second investigation. 

r=1r=n  1/r ( r + 1 ) ( r + 2 ) (r + 3) …( r + k ) = 1/k  k !  − 1/k ( n + 1 ) ( n+ 2 ) ( n + 3 ) … ( n + k ) 

  



Introduction 

I started with proofs of  r=1r=n r  = 1/2 n ( n + 1 ) 

First Proof 

Gauss’s standard proof is 

r=1r=n r = 1 + 2 + 3 + 4 + … + n 

r=nr=1 r = n + n−1 + n−2 + n−3 + … + 1 

2 × r=1r=n r = n ( n + 1 ) 

r=1r=n r  = 1/2 n ( n + 1 ) 

Second Proof (Method of Differences or Telescoping)  

Now    r2 − ( r − 1)2 = 2r −1 

So I set up a sequence of relationships for r = 1 to n 

12 − 02  = 2(1) −1 

22 − 12  = 2(2) −1 

32 − 22  = 2(3) −1… 

n2 − ( n − 1)2 = 2n −1 

and summing left and right hand sides gives 

n2 = 2 n − n 

so by rearranging   r=1r=n r  = 1/2 n ( n + 1 ) 

Third Proof ( also by the Method of Differences)  

This result gives me a clue to experiment with 

r ( r + 1) – ( r − 1) r  = 2r 

Again I set up a sequence of relationships for r = 1 to n 

( 1 × 2 ) – ( 0 × 1 ) = 2 × 1 

( 2 × 3 ) – ( 1 × 2 ) = 2 × 2 

( 3 × 4 ) – ( 2 × 3 ) = 2 × 3… 

 n ( n + 1) – ( n − 1) n  = 2n 

summing left and right hand sides gives 

n ( n + 1)  = 2 × n 

so again I deduce   r=1r=n r  = 1/2 n ( n + 1 ) (and see Appendix A) 



General Solution  r ( r + 1 ) ( r + 2 ) … ( r + k ) 

I summarised my first theorem with two further known theorems. 

r=1r=n r    = 1/2 n ( n + 1 ) 

r=1r=n r ( r + 1 )    = 1/3 n ( n + 1 ) ( n + 2 ) 

r=1r=n ( r + 1 ) ( r + 2 ) = 1/4 n ( n + 1 ) ( n + 2 ) ( n + 3 ) 

and thus conjectured the general solution 

 r ( r + 1 ) ( r + 2 ) … ( r + k )  =1/( k + 2 ) n ( n + 1 ) ( n + 2 ) … ( n + k + 1 ) 

General Solution  r ( r + k ) ( hereon for  assume r=1r=n ) 

I summarised two known theorems  

 r ( r + 1 )  = 1/3 n ( n + 1 ) ( n + 2 ) 

  r ( r + 2 ) = 1/6 n ( n + 1 ) ( 2n + 7 ) 

The second I also derived by the Method of Differences by setting up the 

relationship 

r (r + 1) (r + 2) – (r – 2) ( r ) + (r + 2) = 6 r ( r + 2 ) and proceeding as before 

but the algebra is detailed and it is not a particularly intuitive experience. 

I then conjectured the general solution 

 r ( r + k )  = 1/6 n ( n + 1 ) ( 2n + 3k + 1 ) 

Setting k = 0 gave   r 2  = 1/6 n ( n + 1 ) ( 2n + 1 ) a known result 

Setting k = 1 gave   r ( r + 1 )  = 1/6 n ( n + 1 ) ( 2n + 4 ) 

= 1/3 n ( n + 1 ) ( n + 2 )  which was derived above. 

However having established formulae for both  r and   r 2 I can use this as a 

toolkit. 

 r ( r + k )  =  r 2 I +  r k 

= 1/6 n ( n + 1 ) ( 2n + 1 ) + k 1/2 n ( n + 1 ) 

= 1/6 n ( n + 1 ) ( 2n + 3k + 1 ) as before. 

  



General Solution  1/( r + k − 1 ) ( r + k ) ( r + k  + 1 ) 

I summarised three known theorems  

 1/r ( r + 1 )   = n/( n + 1 )  { for proof see Appendix B } 

 1/( r + 1 ) ( r + 2 ) = n/2 ( n + 2 )  { actually ( n + 1 )/( n + 2 ) − 
1/2 } 

 1/( r + 2 ) ( r + 3 ) = n/3 ( n + 3 )   { actually ( n + 1 )/2( n + 3 ) − 
1/6 } 

I then conjectured the general solution 

 1/( r + k ) ( r + k + 1 ) = n/( k + 1 ) ( n + k + 1 ) 

General Solution  1/( r + k − 1 ) ( r + k ) ( r + k  + 1 ) 

I summarised three known theorems  

 1/r ( r + 1 ) ( r + 2 )  = n ( n + 3 )/4 ( n + 1 ) ( n + 2 ) 

 1/( r + 1 ) ( r + 2 ) ( r + 3 ) = n ( n + 5 )/12 ( n + 2 ) ( n + 3 ) 

 1/( r + 2 ) ( r + 3 ) ( r + 4 ) = n ( n + 7 )/24 ( n + 3 ) ( n + 4 ) 

I then conjectured the general solution 

 1/( r + k − 1 ) ( r + k ) ( r + k  + 1 ) = n ( n + 2k + 1 )/2n ( n + 1 ) ( n + k ) ( n + k + 1 ) 

Central Investigation General Solution to  1/r  ( r + 1 ) ( r + 2 ) … ( r + k )  

I summarised my previously derived theorems  

 1/r ( r + 1 )  = n/( n + 1 ) 

and    1/r ( r + 1 ) ( r + 2 ) = n ( n + 3 )/4 ( n + 1 ) ( n + 2 ) 

and the general form would also need to demonstrate the harmonic series 

 1/r   =   

However no amount of judicious juggling would give me a workable general form.  

At this stage I had insufficient examples to guide me and had not fully developed 

the Method of Differences subsequently summarised in the appendices. 

I subsequently discovered that the factoring of the numerator in the first two 

examples was purely fortuitous. 

  



The Harmonic Triangle 

As a distraction and in hope of later inspiration, I started to study Leibnitz’s 

Harmonic Triangle. This is calculate by assuming the first diagonal proceeds 1/2 
1/3 

1/4 
1/5  etc. and each term is the sum of the two terms below – not above as in 

Pascal’s triangle.  So I started with 

1 
1/2  

1/2 

1/3  ?  
1/3  

1/4  ?  ?  
1/4  

and derived the triangle 

1 
1/2  

1/2 

1/3  
1/6  

1/3  
1/4  

1/12  1/12  
1/4  

1/5  
1/20  1/30  

1/20  1/5 

As typing fractions was tedious I inverted the triangle 

1 

2  2 

3  6  3 

4  12  12  4 

5  20  30  20  5 

As typing out a triangle was also tedious I wrote each diagonal as follows  

1st diagonal  1 2 3 4 5 … 

2nd diagonal  2 6 12 20 30 … 

3rd diagonal  3 12 30 60 105 … 

4th diagonal  4 20 60 140 280 … 

5th diagonal  5 30 105 280 630 … 

6th diagonal  6 42 168 504 1260 … 

7th diagonal  7 56 252 840 2310 … 



Now I expected that the general term of each sequence would be an algebraic 

function, the 2nd diagonal a quadratic, the 3rd diagonal a cubic, the 4th diagonal a 

quartic, the 5th a quintic etc. and this proved to be correct. 

Now as I had already developed an algorithm for determining the algebraic function 

for any finite sequence (see Appendix C), I just used Sloane’s Encyclopaedia of 

Sequences, also thinking that if I came across an unregistered sequence I might be 

able to claim it as my own.   

My results for each diagonal were 

1st 1   2 3 4 5…  n / 0!   Natural Numbers A000027 

2nd  2   6 12 20 30…  n ( n + 1) / 1! Oblong Numbers A002378 

3rd  3  12 30 60 105… n ( n + 1) ( n + 2) / 2!    A002748 

4th  4  20 60 140 280… n ( n + 1) ( n + 2) ( n + 3 ) / 3! A033488 

5th  5  30 105 280 630… n (n + ) (n + 2) (n + 3)(n + 4) / 4! A174002 

6th  6  42 168 504    1260…n(n+1)(n+2)(n+3)(n+4)(n+5) / 5!  unregistered 

7th  7  56 252 840    2310…n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)/6! (ditto) 

For symmetry, I added division by 0! and 1! to the first two sequences. 

I then summed the diagonals of the Harmonic triangle.  I entered 20 rows into a 

spreadsheet and summed directly and discovered the summations were 

 1st diagonal to infinity is infinity – this is the harmonic series. 

 2nd diagonal to infinity is 1    3rd diagonal to infinity is 1/4 

 4th diagonal to infinity is 1/18    5th diagonal to infinity is 1/96 

Next I noticed that the  

2nd diagonal was ( 1 × 2 ), ( 2 × 3 ), ( 3 × 4 ), ( 4 × 5 ), ( 5 × 6 ), … 

3rd diagonal was ( 1 × 2 × 3 )/2 ! , 
( 2 × 3 × 4 )/2 ! , 

( 3 × 4 × 5 )/2 ! , 
( 4 × 5 × 6 )/2 ! , 

( 5 × 6 × 7 )/2 ! ,… 

4th diagonal was ( 1 × 2 × 3 × 4 )/3 ! , 
( 2 × 3 × 4 × 5 )/3 ! , 

( 3 × 4 × 5 × 6 )/3 ! , 
( 4 × 5 × 6 × 7 )/3 ! ,  ,… etc. 

and that also gave the clue that the sequence 1, 4, 18, 96 …was n  n ! 

Hence I could immediately see that the general formula for the summation 

 1/r  ( r + 1 ) ( r + 2 ) … ( r + k ) was within my grasp.  I finalised the detail in two steps. 

  



Infinite Series 

1/( 1  2 ) + 1/( 2  3 ) + 1/( 3  4 ) … = ( 1– 1/2 ) + ( 1/2 – 1/3 ) + ( 1/3 – 1/4 ) … 

= 1 
1/( 1  2  3 ) + 1/( 2  3  4 ) + 1/( 3  4  5 ) … = 1/2 ( 

1/{ 1  2 } – 1/{ 2  3 } ) + 1/2 ( 
1/{ 3  4 } – 1/{ 4  5 } ) 

…  

= 1/4 
1/(1  2  3  4) + 1/(2  3  4  5)+ 1/(3  4  5  6) … = 1/3 (

1/{123} – 1/{234} ) + 1/3 (
1/{234} – 

1/{345} ) … 

= 1/18 

and by the same method it can be demonstrated that 
1/ ( 12345 ) + 1/( 23456 ) + 1/( 34567 ) … = 1/96 

and the general form is 
1/( 1  2  3 …  k ) + 1/( 2  3  4  …  { k + 1 } ) + 1/( 3  4  5  …  { k + 2 } ) …  = 1/( n  n ! ) 

Finite Series 

Now that I knew the infinite sums, I conjectured that the finite sums were in the 

form 

eg.    1/r ( r + 1 ) ( r + 2 ) = n ( n + 3 )/4 ( n + 1 ) ( n + 2 ) 

      = 1/4 − 1/ f ( n ) 

By algebraic manipulation I quickly established that 

 1/r ( r + 1 )  = 1 − 1/ ( n + 1 )  

 1/r ( r + 1 ) ( r + 2 ) = 1/4 − 1/2 ( n + 1 ) ( n+ 2 ) 

so I conjectured that 

 1/r ( r + 1 ) ( r + 2 ) ( r + 3 ) = 1/18 − 1/3 ( n + 1 ) ( n + 2 ) ( n + 3 ) 

See Appendix D for proof by Method of Differences and Appendix E for proof by 

induction. 

  



Conclusion General Solution r=1r=n  1/r ( r + 1 ) ( r + 2 ) (r + 3) …( r + k )  

The algebraic manipulation enabled me to see that the general solution must be 

r=1r=n  1/r ( r + 1 ) ( r + 2 ) (r + 3) …( r + k ) = 1/k  k !  − 1/ k ( n + 1) ( n + 2) ( n + 3) … ( n + k ) 

the desired result and achieved with no little satisfaction.   

For k = 0 the harmonic series is indeed infinite. 

Addendum 1 

For completeness I then reduced the original unresolved case for k = 3 into a 

single fraction 

r=1r=n  1/r ( r + 1 ) ( r + 2 ) (r + 3) = 1/18 − 1/3 ( n + 1 ) ( n+ 2 ) ( n + 3 ) 

= 3 ( n + 1 ) ( n+ 2 ) ( n + 3 ) − 18/18  3 ( n + 1 ) ( n+ 2 ) ( n + 3 ) 

= ( n + 1 ) ( n+ 2 ) ( n + 3 ) − 6/18 ( n + 1 ) ( n+ 2 ) ( n + 3 ) 

which reduces to    = ( n³ + 6n²+ 11n )/18 ( n + 1 ) ( n+ 2 ) ( n + 3 ) 

and explains why I could not easily see the pattern from my original investigation, 

as it would seem the numerator factoring for k = 1,2 was merely fortuitous. 

Addendum 2 General Term of the Harmonic Triangle 

And finally having diverted to the Harmonic Triangle I should establish the general 

form B( n , r )   that is nth number in the rth row. 

Writing Pascals triangle and Leibnitz’s (inverted) triangle side by side 

1       1 

1  1     2  2 

1  2  1   3  6  3 

1  3  3  1 4  12  12  4 

etc. and dividing Pascal’s into Leibnitz’s, I immediately derived 

  



 

1 

2  2 

3  3  3 

4  4  4  4  etc. 

so a bit of judicious algebraic manipulation gave me  

B ( n , r )  C ( n , r ) = 1/( n + 1 ) 

Areas for Further Investigation 

In a separate paper I investigated the extension of Pascal’s triangle (the binomial 

distribution) into the Trinomial, Quadrinomial, Quintinomial and Sextinomial 

Triangle which gives the probability distribution for throwing many die.  Could this 

be extended into the Trinomial Harmonic Triangle and beyond ? 

Robert Goodhand 

27th December 2012  

  



 

Appendix A   Geometric “proof”  r=1r=n r = 1/2 n ( n + 1 ) 

Start with the known fact that 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 

Imagine 55 squares stacked into a right angled isosceles triangle base 10 height 10.  

As a first order approximation the area must be half base x height, 50 square units, 

which is the first term of the above expression. 

The second term 1/2 n, 5 units, is the missing 10 sliced diagonally squares that fall 

outside the triangle. 

Alternatively I can fit together two of these triangles to make a rectangle 11 x 10 

and the summation is immediately obvious.  As a bonus it is now evident that the 

sum of any two triangular numbers is a square number. 

The method can be extended to higher dimensions.  A sequence of squares 

stacked into a pyramid will approximate to an area (a summation) of 1/3 n
3. 

I conjectured many years ago that this pattern should continue to higher 

dimensions, so that in n dimensions the volume of a hyper pyramid is given by 

Hyper volume = 1/n x hyper base which I now understand is correct but not 

investigated. 

In a separate investigation by the method of telescoping I deduced the formula for 

summing power series up to 110 + 210 + 310 + …n10 and discovered Bernouilli 

numbers. I was only mildly disappointed later to discover that Jacob Bernouilli had 

first identified these in 1737 because there was a mistake in his original publication. 

I was once put in prefects’ detention when about 15 and told to add up the 

numbers 1 to 100.  I said “when I’ve done that can I go?” which agreed.  So I first 

added up 1 to 9 and got 45.  I then reasoned that pattern repeated 10 times so 

would be 450. I then realised in the “tens” column the total would be the same as 

it was the same numbers just in a different order – ten “1”s, ten ”2”s etc. so again 

450.  Add to that the 45 gave me 4950 and finally the “100” to give 5050. 

  



Appendix B   To prove  1/r ( r + 1 ) = n/( n + 1 ) 

I set up    ur = 1/r ( r + 1)  

ur+1 = 1/( r + 1) ( r + 2 )  

so    ur r ( r + 1) = ur+1( r + 1) ( r + 2 ) 

and therefore   r ur  = ur+1( r + 2 ) 

r ur  = ( r + 1) ur+1 + ur+1 

r ur − ( r + 1) ur+1 = ur+1 

This term “r ur − ( r + 1) ur+1” is the key because I now set up a sequence from u1 

to un−1 

1 u1 − 2 u2 = u2 

2 u2 − 3 u3 = u3 

3 u3 − 4 u4 = u4… 

( n − 1 ) u( n − 1 ) – n un = un 

I then added the left and right columns to get 

1 u1 – n un = ( u2 + u3 + u4 + u5 … un ) 

Adding u1 to both sides       2 u1 – n un = ( u1 + u2 + u3 + u4 … un ) 

and thus    ur = 2/ ( 1  2 )  – n / n ( n + 1) 

hence    ur   = n / ( n + 1)   the desired result. 

Appendix C Summing an Algebraic-Power Series 

Given the terms of an algebraic function f ( n ) 

n  1  2  3  4 … n 

f ( n )  a1  a2  a3  a4 … an 

1st diff.   b1  b2  b3 

2nd
 diff.    c1  c2 

3rd
 diff.     d1 

Then r=1r=n ar = a1 ( n ) /1! + b1 ( n ) ( n – 1 ) / 2! + c1 ( n ) ( n – 1 ) ( n – 3 ) / 3! … 

This sequence will eventually terminate with 0 terms for any algebraic function. 

  



Appendix D – Obtaining Series by the Method of Differences 

I subsequently realised there was a direct way to sum 1/r ( r + 1) ( r + 2 ) ( r + 3 ) to n terms. 

ur = 1/r ( r + 1) ( r + 2 ) ( r + 3 ) 

ur+1 = 1/( r + 1) ( r + 2 ) ( r + 3 ) ( r + 4 ) 

ur r ( r + 1) ( r + 2 ) ( r + 3 ) = ur+1( r + 1) ( r + 2 ) ( r + 3 ) ( r + 4 ) 

r ur   = ur+1( r + 4 ) 

r ur  = ( r + 1) ur+1 + 3 ur+1 

r ur − ( r + 1) ur+1 = 3 ur+1 

This term “r ur − ( r + 1) ur+1” is the key because I now set up a sequence from u1 

to un−1 

1 u1 − 2 u2 = 3 u2 

2 u2 − 3 u3 = 3 u3 

3 u3 − 4 u4 = 3 u4… 

( n − 1 ) u( n − 1 ) – n un = 3 un 

So using essential the same technique I add the two columns to get 

1 u1 – n un = 3 ( u2 + u3 + u4 + u5 … un ) 

Adding 3 u1 to both sides 

4 u1 – n un = 3 ( u1 + u2 + u3 + u4 … un ) 

and thus    ur = 1/3 (4 u1 – n un) 

 

     ur = 1/3 ( 
4/ ( 1  2  3  4 )  – n / n ( n + 1) ( n + 2 ) ( n + 3 ) 

     ur   = 1/18 – 1 / 3 ( n + 1) ( n + 2 ) ( n + 3 ) 

the desired result. 

This procedure is more robust in following a structured method for determining 

the difference term rather than just producing ur = f (r) – f ( r +1) like a rabbit out 

of a hat. 

In this case f (r) = 1 / 3 ( r + 1) ( r + 2 ) ( r + 3 ). 

  



Appendix E Proof by Induction  1/r ( r + 1 ) ( r + 2 ) ( r + 3) = 1/18 − 1/3 ( n + 1 ) ( n + 2 ) ( n + 3 ) 

This is true for r = 1, n = 1 so for proof by induction assume 

if   r=1r=n  1/r ( r + 1 ) ( r + 2 ) ( r + 3 ) = 1/18 − 1/3 ( n + 1 ) ( n + 2 ) ( n + 3 ) 

then  r=1r=n+1  1/r ( r + 1 ) ( r + 2 ) ( r + 3 ) = r=1r=k  1/r ( r + 1 ) ( r + 2 ) ( r + 3 ) + 
          1/(n + 1) (n + 2) (n + 3) (n + 4) 

= 1/18 − 1/3 ( n + 1 ) ( n + 2 ) ( n + 3 ) +
1/( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4) 

= 1/18 − 1/(n + 1) (n + 2) ( n + 3 ) { 
1/3 − 1/( n + 4 ) } 

= 1/18 − 1/( n + 1) ( n + 2 ) ( n + 3 ) { 
( n + 4− 3 ) /3 (n + 4 ) } 

= 1/18 – ( n + 1 )/3 ( n + 1) (n + 2) ( n + 3 )( n + 4 ) 

= 1/18 – ( n + 1 )/3 ( { n + 1 } + 1) ( { n + 1 } + 2 } { { n + 1 } + 3 )  

the desired result. 

Appendix F Why does 0! =1 

It is often stated that 0! = 1 by definition.  This is misleading for 2 reasons. 

Mathematically the Factorial function is part of the Gamma function for positive 
integers and 0! follows from this. 

However it can be immediately derived by a shift in definition. 

Let   3! = 4! / 4 

so   2! = 3! / 3 

and   1! = 2! / 2 

therefore  0! = 1! / 1 = 1 

Simple. 

 
 
 
 


