Summation $u_r = r(r + k)$

Introduction

I am seeking the general formula to sum expressions such as $|\times 2 + 2 \times 3 + 3 \times 4 \dots$ $|\times 3 + |\times 4 + |\times 5 \dots$ $|\times (|+k) + 2 \times (2 + k) + 3 \times (3 + k)$ each to r terms

Method

If u_r can be reconstructed such that

u_r = f(r) - f(r-1) then by telescoping $\sum u_r = f(r) - f(0)$ Suppose I want to determine $\sum r(r+I)$ then I make my first guess g(r) = (r)(r+1)(r+2)g(r-1) = (r-1)(r)(r+1)and g(r) - g(r - I)= r(r+1)(r+2-r+1)= 3r(r+1)so I revise my guess to $f(r) = \frac{1}{3}g(r)$ $= \frac{1}{3}(r)(r+1)(r+2)$ Example I want to sum $1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5$ by the formula $f(r) = \frac{1}{3}(r)(r+1)(r+2)$ $r=1\sum^{r=4} ur = \frac{1}{3} 4 \times 5 \times 6 = 40$ a true result

General Form $\sum r(r + k)$

I'm now ready to tackle the general form $\sum r(r + k)$ and I surmise it will be of the form r(r + 1)(ar + b) $f(r) = (r^2 + r)(ar + b)$ $= ar^3 + br^2 + ar^2 + br$ $ar^3 + (a + b)r^2 + br$ $f(r - 1) = (r - 1)(r) \{a(r - 1) + b\}$ $= (r^2 - r)(ar + b - a)$ $= ar^3 + br^2 - ar^2 - ar^2 - br + ar$ $= ar^3 + (b - 2a)r^2 + (a - b)r$ so $f(r) - f(r - 1) = 3ar^2 + (2b - a)r$

$Try \sum r(r+1)$

Now if I go back to $\sum r(r + 1)$ then I have $r(r + 1) = 3ar^2 + (2b - a)r$ equating $r^2 \Rightarrow 1 = 3a$ so $a = \frac{1}{3}$ equating $r \Rightarrow 1 = 2b - \frac{1}{3}$ so $b = \frac{2}{3}$ so $f(r) = ar^3 + (a + b)r^2 + br$ $= \frac{1}{3}(r)(r + 1)(r + 2)$

$Try \sum r(r+2)$

Now I have $r(r + 2) = 3ar^{2} + (2b - a)r$ equating $r^{2} \Rightarrow I = 3a$ so $a = \frac{1}{3}$ equating $r \Rightarrow 2 = 2b - a$ so $b = \frac{7}{6}$ so f(r) = ar^{3} + (a + b) r^{2} + br $= \frac{1}{6}(r)(r + I)(2r + 7)$

Try $\sum r(r+3)$

Now I have $r(r + 3) = 3ar^{2} + (2b - a)r$ equating $r^{2} \Rightarrow I = 3a$ so $a = \frac{1}{3}$ equating $r \Rightarrow 3 = 2b - a$ so $b = \frac{10}{6}$ so $f(r) = ar^{3} + (a + b)r^{2} + br$ $= \frac{1}{3}(r)(r + I)(r + 5)$

Try $\sum r(r+4)$

Now I have

r (r + 4) = $3ar^{2} + (2b - a)r$ equating $r^{2} \Rightarrow I = 3a$ so $a = \frac{1}{3}$ equating $r \Rightarrow 4 = 2b - a$ so $b = \frac{13}{6}$ so f(r) = $ar^{3} + (a + b)r^{2} + br$ $= \frac{1}{6}(r)(r + I)(2r + I3)$

General Form

By starting each expression with $\frac{1}{6}$ and inserting 2r into the last bracket, the general form is quickly deduced as $\sum r(r+k)$ $=\frac{1}{6}(r)(r+1)(2r+3k+1)$

Verification

Finally I demonstrate my new formula with 2 examples Set r = 4 and k = 5 ie find the sum $_{r=1}\sum^{r=4} u_r$ Now this is $1 \times 6 + 2 \times 7 + 3 \times 8 + 4 \times 9$ = 80 so I know where I'm heading By my new formula $\sum r (r + 5)$ for 4 terms is $= \frac{1}{6}(4)(5)(24) = 80$ Set r = 5 and k = 8 ie find the sum $_{r=1}\sum^{r=4} u_r$ Now this is = $1 \times 9 + 2 \times 10 + 3 \times 11 + 4 \times 12 + 5 \times 13$ = 175 so 1 know where 1'm heading By my new formula $\sum r (r + 5)$ for 5 terms is = $\frac{1}{6}(5)(6)(35) = 175$

Bonus

Given $\sum r(r+k)$ = $\frac{1}{6}(r)(r+1)(2r+3k+1)$ by setting k = 0 o get $1^{2} + 2^{2} + 3^{2} + 4^{2}$... for n terms is = $\frac{1}{6}(n)(n+1)(2n+1)$ ∞ rg