Introduction

I am seeking the general formula to sum
expressions such as
$1 \times 2+2 \times 3+3 \times 4 \ldots$
$1 \times 3+1 \times 4+1 \times 5 \ldots$
$\mathrm{l} \times(\mathrm{l}+\mathrm{k})+2 \times(2+\mathrm{k})+3 \times(3+\mathrm{k})$
each to r terms

Method

If u_{r} can be reconstructed such that
$u_{r} \quad=f(r)-f(r-I)$ then by telescoping
$\sum u_{r}=f(r)-f(0)$
Suppose I want to determine $\sum \mathrm{r}(\mathrm{r}+\mathrm{I})$
then I make my first guess

$$
\begin{aligned}
& g(r)=(r)(r+1)(r+2) \\
& g(r-I)=(r-I)(r)(r+1) \\
& \text { and } g(r)-g(r-I) \\
& \quad=r(r+1)(r+2-r+1) \\
& \quad=3 r(r+1)
\end{aligned}
$$

so I revise my guess to

$$
\begin{aligned}
f(r) & =1 / 3 g(r) \\
& =1 / 3(r)(r+1)(r+2)
\end{aligned}
$$

Example

I want to sum

$$
1 \times 2+2 \times 3+3 \times 4+4 \times 5
$$

by the formula
$f(r)=1 / 3(r)(r+1)(r+2)$
$r=1 \sum^{r=4} u r=1 / 34 \times 5 \times 6=40$ a true result

General Form $\sum \mathbf{r}(\mathbf{r}+\boldsymbol{k})$

I'm now ready to tackle the general form
$\sum r(r+k)$ and I surmise it will be of the form $r(r+l)(a r+b)$

$$
\begin{aligned}
f(r) & =\left(r^{2}+r\right)(a r+b) \\
& =a r^{3}+b r^{2}+a r^{2}+b r \\
& a r^{3}+(a+b) r^{2}+b r \\
f(r-I) & =(r-I)(r)\{a(r-I)+b\} \\
& =\left(r^{2}-r\right)(a r+b-a) \\
& =a r^{3}+b r^{2}-a r^{2}-a r^{2}-b r+a r \\
& =a r^{3}+(b-2 a) r^{2}+(a-b) r
\end{aligned}
$$

so $f(r)-f(r-l)=3 a r^{2}+(2 b-a) r$

Try $\sum r(r+I)$

Now if I go back to $\sum r(r+I)$ then I
have $r(r+1)=3 a r^{2}+(2 b-a) r$
equating $r^{2} \Rightarrow I=3 a \quad$ so $a=1 / 3$
equating $r \Rightarrow I=2 b-1 / 3$ so $b=2 / 3$
so $f(r)=a r^{3}+(a+b) r^{2}+b r$

$$
=1 / 3(r)(r+1)(r+2)
$$

Try $\sum r(r+2)$

Now I have
$r(r+2)=3 a r^{2}+(2 b-a) r$
equating $r^{2} \Rightarrow I=3 \mathrm{a} \quad$ so $\mathrm{a}=1 / 3$
equating $r \Rightarrow 2=2 b-a \quad$ so $b=7 / 6$
so $f(r)=a r^{3}+(a+b) r^{2}+b r$

$$
=1 / 6(r)(r+1)(2 r+7)
$$

Try $\sum r(r+3)$

Now I have

$r(r+3)=3 a r^{2}+(2 b-a) r$ equating $r^{2} \Rightarrow I=3 a \quad$ so $a=1 / 3$
equating $r \Rightarrow 3=2 b-a \quad$ so $b=10 / 6$
so $f(r)=a r^{3}+(a+b) r^{2}+b r$

$$
=1 / 3(r)(r+1)(r+5)
$$

Try $\sum r(r+4)$

Now I have

$$
\begin{aligned}
& r(r+4)=3 a r^{2}+(2 b-a) r \\
& \text { equating } r^{2} \Rightarrow I=3 a \quad \text { so } a=1 / 3 \\
& \text { equating } r \Rightarrow 4=2 b-a \quad \text { so } b=13 / 6 \\
& \text { so } f(r)=a r^{3}+(a+b) r^{2}+b r \\
& \quad=1 / 6(r)(r+1)(2 r+13)
\end{aligned}
$$

General Form

By starting each expression with $1 / 6$ and inserting $2 r$ into the last bracket, the general form is quickly deduced as

$$
\begin{aligned}
& \sum r(r+k) \\
& \quad=1 / 6(r)(r+1)(2 r+3 k+1)
\end{aligned}
$$

Verification

Finally I demonstrate my new formula with 2 examples

Set $\mathrm{r}=4$ and $\mathrm{k}=5$
ie find the sum $r=1 \sum^{r=4} u_{r}$
Now this is $1 \times 6+2 \times 7+3 \times 8+4 \times 9$
$=80$ so I know where I'm heading
By my new formula
$\sum r(r+5)$ for 4 terms is
$=1 / 6(4)(5)(24)=80$

Set $r=5$ and $k=8$
ie find the sum $r=1 \sum^{r=4} u_{r}$
Now this is
$=|\times 9+2 \times 10+3 \times 1|+4 \times 12+5 \times 13$
$=175$ so I know where l'm heading
By my new formula

$$
\begin{aligned}
& \sum r(r+5) \text { for } 5 \text { terms is } \\
& \quad=1 / 6(5)(6)(35)=175
\end{aligned}
$$

Bonus

Given $\sum r(r+k)$

$$
=1 / 6(r)(r+1)(2 r+3 k+1)
$$

by setting $\mathrm{k}=0$ o get
$1^{2}+2^{2}+3^{2}+4^{2} \ldots$ for n terms is

$$
=1 / 6(n)(n+1)(2 n+1)
$$

prg

