Trapezoidal Numbers

The sum of any consecutive sequence is called a trapezoidal number (why?).
eg

$$
8+9+10+11=38
$$

This can be considered as the difference of two triangular numbers. $\mathrm{T}_{11}-\mathrm{T}_{7}$ (why?)

Let the two triangular numbers be c and d
$T_{c}-T_{d}=1 / 2 c(c+1)-1 / 2 d(d+1)$

$$
=1 / 2\left(c^{2}-d^{2}\right)+1 / 2(c-d)
$$

Which probably doesn't get us anywhere.

But tackle the problem more directly.

Take a sequence from a to b
$a+a+1+a+2+a+3 \ldots b-2+b-1+b$
repeat
$b+b-I+b-2+b-3 \ldots a-2+a-1+a$
which added together gives
$(b-a+l)$ lots of $(a+b)$

Now complete this table
a

even	even	$?$	$?$
even	odd	$?$	$?$
odd	even	$?$	$?$

So what sort of numbers can never be trapezoidal?
\wp
$r g$

