Trapezoidal Numbers

The sum of any consecutive sequence is called a trapezoidal number (why?).

eg 8 + 9 + 10 + 11 = 38

This can be considered as the difference of two triangular numbers. $T_{11} - T_7$ (why?)

Let the two triangular numbers be c and d

 $T_{c} - T_{d} = \frac{1}{2} c (c + 1) - \frac{1}{2} d (d + 1)$ $= \frac{1}{2} (c^{2} - d^{2}) + \frac{1}{2} (c - d)$

Which probably doesn't get us anywhere.

But tackle the problem more directly.

Take a sequence from a to b

a + a + I + a + 2 + a + 3b - 2 + b - I + b

repeat

 $b + b - 1 + b - 2 + b - 3 \dots a - 2 + a - 1 + a$

which added together gives

(b - a + 1) lots of (a + b)

а	b	(b – a + I)	(a + b)
even	even	?	?
even	odd	?	?
odd	even	?	?
odd	odd	?	?

Now complete this table

So what sort of numbers can never be trapezoidal?

∕⊃ rg