Triangular Numbers and Combinations

First order triangular numbers are familiar to most students.

First order triangular numbers represent units in a 2-D triangle.

but did you know

Second order triangular numbers represent units in a 3-D tetrahedron.

Triangular numbers correlate with Combinations

As the formula for permutations are readily generated, the formula for triangular numbers are easily deduced.

Algebraic series can often be reduced to the sum of two or more triangular series.

Successive orders of triangular numbers appear on the diagonals of Pascal's Triangle.

Cardinal	I		2		3			4			5			6			7			8		
lst order	ITI = 1	I = 2C2	IT2 =	3 = 3C2	IT3 =	6	= 4C2	IT4 =	10	= 5C2	IT5 =	15	= 6C2	IT6 =	21	= 7C2	IT7 =	28	= 8C2	I T8 =	36	= 9C2
2nd order	2TI = I	I = 3C3	2T2 =	4 <i>= 4C3</i>	2T3 =	10	= 5C3	2T4 =	20	= 6C3	2T5 =	35	= 7C3	2T6 =	56	= 8C3	2T7 =	84	= 9C3	2T8 =	120	= 10C3
3rd order	3TI = I	I = 4C4	3T2 =	5 = 5C4	3T3 =	15	= 6C4	3T4 =	35	= 7C4	3T5 =	70	= 8C4	3T6 =	126	= 9C4	3T7 =	210	= 10C4	3T8 =	330	= 11C4
4th order	4TI = 1	I = 5C5	4T2 =	6 = 6C5	4T3 =	21	= 7C5	4T4 =	56	= 8C5	4T5 =	126	= 9C5	4T6 =	252	= 10C5	4T7 =	462	= 11C5	4T8 =	792	= 12C5

and in general (r-I)T(n-r+I) = nCr

 ∞ RG triangular02/00