Two Variable Statistics - A Simple Summary

X and Y are two variables
$\mathrm{x}_{1} \mathrm{x}_{\underline{2}} \mathrm{x}_{\underline{3}} \mathrm{x}_{4} \ldots \mathrm{x}_{\mathbf{1}} \ldots \mathrm{x}_{\underline{n}}$
$y_{1} y_{\underline{2}} y_{\underline{3}} y_{4} \cdots y_{\underline{1}} \cdots y_{n}$
\sum is the summation sign
${ }_{i=1} \sum^{n}=x_{1}+x_{2}+x_{3} \ldots+x_{i} \ldots+x_{n}$
or more simply $\sum x$
\bar{x} (x bar) is the sample mean of x
$\bar{x}=\left\{\sum x\right\} / n$ and $\bar{y}=\left\{\sum y\right\} / n$
$S_{x x}$ is the variance of x using \bar{x} as the best estimate of the mean of μ.
$S_{x x}=\left\{\sum(x-\bar{x})^{2}\right\} / n$
$=\sum(\bar{x})^{2} / n-2 \bar{x} \sum x / n+n \bar{x} / n$
$=\left\{\Sigma(x)^{2}\right\} / n-\bar{x}^{2}$
We say the mean of the squares minus the square of the means. This form is simpler to calculate and more stable.

The standard deviation
$S_{x}=\sqrt{ }\left(S_{x x}\right)$
$S_{x y}$ is the covariance of X and Y. It is the measure of how two variables change together.
The sign shows the tendency in the linear relationship between the two variables.

$$
\begin{aligned}
S_{x y} & =\left\{\sum(x-\bar{x})(y-\bar{y})\right\} / n \\
& =\sum x y / n-\bar{x} \bar{y}-\bar{y} \bar{x}+\bar{x} \bar{y} \\
& =\sum x y / n-\bar{x} \bar{y}
\end{aligned}
$$

Compare this with S_{xx}
The magnitude of the covariance is difficult to interpret directly so it is normalised to produce the correlation coefficient r a dimensionless measure.

$$
r=S_{x y} /\left(S_{x} S_{y}\right)
$$

Using the two simplifications already shown and cancelling the n's we get
$r=\left(\sum x y-n \bar{x} \bar{y}\right) / \sqrt{ }\left(\sum x^{2}-n \bar{x}^{2}\right) \sqrt{ } \sum\left(y^{2}-n \bar{y}^{2}\right)$
The correlation coefficient is a measure of the degree of linearity between the two variables X and Y Now if we draw a line of best fit between the plots the equation is given by $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
Now the gradient is given by $\mathrm{m}=\mathrm{S}_{\mathrm{xy}} / \mathrm{S}_{\mathrm{xx}}$
Strictly this is y on x and the line passes through the point (\bar{x}, \bar{y})

So we have $(y-\bar{y})=m(x-\bar{x})$
Rearranging we determine

$$
c=\bar{y}-m \bar{x}
$$

or

$$
c=\bar{y}-\left(S_{x y} / S_{x x}\right) \bar{x}
$$

This is the y-intercept of the line of best fit.

So the equation for linear regression is
$(y-\bar{y})=\left\{S_{x y} / S_{x x}\right\}(x-\bar{x})$
The coefficient of determination

$$
r^{2}
$$

is a measure of the strength of association between the two variables X and Y .
For linear regression r^{2} it is the proportion explained by the model.
$0 \leq r^{2}<0.25$ very weak
$0.25 \leq r^{2}<0.5$ weak
$0.5 \leq r^{2}<0.75$ moderate
$0.75 \leq r^{2}<0.9$ strong
$0.9 \leq r^{2}<1.0$ very strong
$r^{2}=\mathrm{I}$ is perfect correlation.
For linear correlation we have

$$
r^{2}=r^{2}
$$

but be careful
r^{2} is the coefficient of determination and is a thing all in its own right
whereas
r^{2} is the correlation coefficient squared.

Not a lot of people know this!
\bigcirc rg

